

An Introduction
to

Computer Science

Robert Sedgewick

Kevin Wayne

Princeton University

Copyright 2003 by Robert Sedgewick and Kevin Wayne

For information on obtaining permission for use of material from this work, please submit

a request to the authors at

rs@cs.princeton.edu

 and

wayne@cs.princeton.edu

i

Preface

Computer science as an academic discipline has evolved to embrace a set of

intellectual challenges on a par with other sciences. This fact, combined with

the undeniable impact of computer science on the modern world, demands

an introductory college textbook comparable with commonly-used text-

books in physics, chemistry, or biology. Accordingly, this book is intended to

meet the need for an introductory college text in computer science. The dis-

tinctive feature of the book is that it has broader coverage of the field than is

found in many texts that are currently in use.

All college students can benefit from exposure to computer science

early in the curriculum. Therefore, increasing numbers of colleges and uni-

versities are requiring that students (particularly those in the sciences, engi-

neering, mathematics, and even the social sciences) take one or two semester

courses in computer science in the first year. In more mature disciplines, it is

commonly accepted that, at this critical point in the curriculum, it is impor-

tant to challenge students with fundamental intellectual issues while survey-

ing the field. This book aims to support an introductory course that does so

for computer science.

We have three primary goals. First, we want to

demystify

 computer

systems by unpeeling levels of abstraction down to the simplest physical com-

ponent, leaving no black boxes. Second, we want to

empower

 students by giv-

ing them the experience and insight necessary to exploit available technology

whenever appropriate. Third, we want to build

awareness

 of the substantial

intellectual underpinnings of the field and its broad reach into other sciences.

ii

An Introduction to Computer Science

The book is a self-contained treatment intended for people with no

previous experience in computer science. While its primary purpose is to

serve as a textbook for first-year college students, it may also serve as a broad

introduction to the field that may be of interest to anyone who has not been

exposed to its fundamentals.

Coverage

The book is organized around four areas of computer science: programming,

architecture, theory, and systems. We introduce fundamental concepts in each

area and pay special attention to relationships among them. A proper intro-

duction to the field must do justice to each of these four areas. We also cover

applications in scientific computing throughout the book, to reinforce and

supplement the curriculum that is typically taught to students in mathematics,

science, and engineering in high school and their first year in college.

Programming

 is essential to being able to understand and appreciate

computer science. We cover basic programming in Java, abstract data types

and Java classes, elementary data structures, and the design and analysis of

algorithms. To teach these concepts, we use sample programs that solve

interesting problems supported with exercises ranging in difficulty from self-

study drills to challenging problems that call for creative solutions. Whenever

possible, we draw examples from concepts to be covered elsewhere in the

book or from scientific or commercial applications. Students who learn the

programs in this book will have the solid foundation necessary to prepare

them to be able to effectively use computers as they pursue any academic dis-

cipline.

Architecture

 refers both to the art of designing computers and to the

process of building them. Our coverage of this topic is centered around an

imaginary machine that is similar to real computers. We specify the machine

in full detail, consider machine-language programs for familiar tasks, and

present a Java simulator for the machine. We continue with a treatment of

circuits and logical design, culminating in a description of how such a

machine might be built from the ground up. Our intent is to demystify this

apparently formidable challenge while also providing a context for under-

iii

standing how Java programming and other familiar high-level tasks relate to

actual machines.

Theory

 helps us to understand the limits on what we can accomplish

with computers. We present Turing’s classical results that show how simple

abstract machines can help us to pose fundamental questions about the

nature of computation. Some of these are among the most important scien-

tific questions of our time. We also consider practical applications such as

how to estimate the running times of our programs and how to design effi-

cient algorithms.

Systems

 enable us to work with computers at a high level of abstrac-

tion. We describe the basic components of computer systems that support

programming; operating systems for interacting with our programs and our

data; networks that allow interaction among computers; and applications

systems that provide specialized support for particular tasks.

Our coverage of the four areas is intertwined and also threaded with

descriptions and examples of various classical algorithms, programming lan-

guages, scientific computing, and commercial applications. Where relevant,

we also provide proper historical perspective.

Generally speaking, we

introduce

 material that is covered, at most

colleges and universities, in several later computer science courses. For com-

puter science majors, this breadth of coverage provides a foundation to be

reinforced in later courses. For students in other fields who have a chance to

take only one or two courses in computer science, this introduction to pro-

gramming, architecture, theory and systems in the context of scientific appli-

cations gives the background that they need to effectively address the impact

of computer science on their chosen fields.

Use in the Curriculum

This book is intended for a college course aimed at teaching novices

to program while at the same time introducing them to the field of computer

science. As such, its content fulfills the requirements of a first course in com-

puter science in a reasonable way. But it does offer an alternative to many

courses that are traditionally taught. Rather than delving deeply into the

details of a particular programming language, we put programming in con-

iv

An Introduction to Computer Science

text. Rather than giving scant coverage to programming while surveying

computer science, we are able to address fundamental issues that cannot be

understood without programming experience.

One option is to use this book is as the basis for a full-year college

course, perhaps supplemented with a standard text on computer program-

ming. Depending on the needs of the students and the experience of the

instructor, diversions of varying length on basic programming skills are

appropriate. For logical consistency, we have put most of the material on

programming at the beginning of the book; in practice, it is best to spread the

coverage of programming throughout the course, using weekly programming

assignments tied to the material in the text.

Another option is to use the book as the basis for a fast-paced one-

semester course. This choice is appropriate in situations where students in

the sciences and engineering may have only one semester to devote to com-

puter science. The course is best positioned early in the curriculum, because

students who take it are sure to be able to use computers much more effec-

tively when necessary in courses in their specialty. If the course is later in the

curriculum, students may have a more mature point of view that better

enables understanding of the advanced topics (but not much patience with

learning the basics of programming).

Simply put, this book provides the following alternative to tradi-

tional introductory courses: a way to introduce students to computer science

while at the same time teaching them to program, in a single course.

Prerequisites

Our aim is for the book to be suitable for typical first-year science

and engineering students. Accordingly, we do not expect preparation signif-

icantly different from other entry-level science and mathematics courses.

Learning to program

 is one of our primary goals, so we assume no

prior programming experience. Indeed, one of the most important features

of our approach is that we integrate teaching programming with teaching the

rest of computer science. But what should be done with students who have

already taken a programming course, in high school or in college? Actually

the material in this book is ideal for such students. They can review the mate-

v

rial on programming (which is likely to be in a different context from what

they learned) and focus on the intellectual issues at the heart of the book

(which are not likely to have been covered at all in their earlier course).

There is no substitute for experience when learning to program. Any-

one writing a program to solve a new problem faces a challenging intellectual

task, just as does anyone writing an essay on a new topic. Students who have

written numerous essays in high school still benefit from introductory writ-

ing courses in college; just as students who have written numerous programs

in high school can benefit from taking an introductory programming course.

This analogy breaks down slightly because no one comes to college never hav-

ing written an essay, but many students come to college never having written

a program. But our experience has been that we can get students to the point

where they can confidently write a program relatively quickly and that virtu-

ally all students in science and engineering can benefit from taking this as a

first course (perhaps classified according to their programming experience).

Mathematical maturity

 is just as important. While we do not dwell on

mathematical material, we do refer to the mathematics curriculum that stu-

dents have taken in high school, including algebra, geometry, and trigonom-

etry. Most students in our target audience (those intending to major in the

sciences and engineering) automatically meet these requirements.

Discrete

mathematics

 plays a critical role in computer science but is not always fully

covered in mathematics curricula, so we cover topics such as Boolean logic,

mathematical induction, basic probability, and discrete sums with the point

of view that most students have some familiarity with them but that the

major concepts need to be reinforced (and we include an appendix with some

basic information on discrete mathematics).

We also describe numerous

scientific applications,

integrated though-

out the text. We occasionally draw on examples from probability, statistics,

and calculus and Chapter 9, on scientific computing, covers several advanced

topics. This material can be skipped by students who do not have requisite

preparation (though they may wish to refer to it when they do take the more

advanced courses). Otherwise, our examples do not assume any preparation

beyond that provided by typical high-school courses in mathematics, physics,

biology, or chemistry.

vi

An Introduction to Computer Science

Goals

What can instructors of upper-level courses in science and engineering expect

of students who have successfully completed a course based on this book?

Anyone who has taught an introductory computer science course

knows that expectations are typically high: each instructor expects all stu-

dents to be familiar with the computing environment and approach that he

or she wants to use. A physics professor might expect some students to learn

to program over the weekend to run a simulation; an engineering professor

might expect other students to be using a particular package to numerically

solve differential equations; or a computer science professor might expect

knowledge of the details of a particular programming environment. Is it real-

istic to expect to be able to meet such diverse expectations? Should there be a

different introductory course for each set of students? Colleges and universi-

ties have been wrestling with such questions since computers came into wide-

spread use in the latter part of the 20th century.

Our primary goal is to provide an answer to such questions by devel-

oping a common introductory course in computer science for all students in

science and engineering (including prospective computer science majors)

that is analogous to commonly-accepted introductory courses in mathemat-

ics, physics, biology, and chemistry. The course may also be suitable for stu-

dents in the humanities who wish a full introduction to the field.

Students who master the material in this book gain the confidence

and knowledge that they need to be able to learn to exploit computers wher-

ever they might appear later in their careers, whether it be using an integrated

mathematical software package to attack advanced mathematical problems,

using Java to develop innovative applications, writing code to control sophis-

ticated devices, using simulation to study complex problems, or developing

new computational paradigms. People continually need to be able to develop

new skills in particular contexts because computers continue to evolve.

Instructors teaching students who have studied from this book can expect

that they have the background and experience necessary to make it possible

for them to acquire such skills, to effectively exploit computers in diverse

applications, and to appreciate their limitations.

vii

Booksite

An extensive amount of information that supplements this text may be found

on the world-wide web at

http://www.cs.princeton.edu/IntroCS

For economy, we refer to this web site as the

booksite

throughout. It contains

material oriented towards instructors, students, and casual readers of the

book. We briefly describe this material here, though, as all web users know, it

is best surveyed by browsing. With a few exceptions to support testing, the

material is all publicly available.

One of the most important implications of the booksite is that it

empowers instructors and students to use their own computers to teach and

learn the material in this course. Anyone with a computer and a browser can

begin learning computer science and learning to program, by following a few

instructions on the booksite. The process is no more difficult than download-

ing a media player or a new computer game.

For

instructors,

the booksite contains information about teaching the

course. This information is primarily organized around a teaching style that

we have developed over the past decade, where we offer two lectures per week

to a large audience, supplemented by two class sessions per week where stu-

dents meet in small groups with instructors or teaching assistants. The book-

site has presentation slides for the lectures, which set the tone for the course.

We assign weekly problem sets based on exercises from the book and

programming assignments, also based on exercises from the book, but with

much more detail. Each programming assignment is intended to teach a rel-

evant concept in the context of an interesting application while presenting an

ambitious and interesting challenge to each student. The progression of

assignments embody our approach to teaching programming. The booksite

fully specifies all the assignments and provides detailed, structured informa-

tion to support teaching students to complete them in the alloted time,

including code for strawman solutions, descriptions of suggested approaches,

and outlines for what should be taught in class sessions.

The booksite also includes webware for use in managing student sub-

missions and grading assignments.

viii

An Introduction to Computer Science

For

students

, the booksite contains quick access to much of the mate-

rial in the book, plus extra material to encourage self-learning. Solutions are

provided for many of the book’s exercises, including complete program code

and text data. There is a wealth of information associated with programming

assignments, including suggested approaches, checklists, FAQs, and test data.

For

casual readers

 (including instructors and students!) the booksite

is a resource for accessing all manner of extra information associated with the

book’s content. All of the booksite content provides web links and other

routes to pursue to find more information about the topic under consider-

ation. There is far more information accessible than any individual could

fully digest, but our goal is to provide enough to whet any reader’s appetite

for more information about the book’s content.

As with any web site, our

Introduction to Computer Science

 booksite is

continually evolving, but it is an essential resource for everyone who owns

this book. In particular, the supplemental materials supporting teaching and

learning within a first-year college course are critical to our goal of making

computer science an integral component of the education of all scientists and

engineers.

Acknowledgements

ix

Contents

1

Overview

 1

1.1 A Simple Machine 1

1.2 Applications 1

1.3 Analysis 1

1.4 Context 1

2

Elements of Programming

 21

2.1 Your First Program 22

2.1 Primitive Types of Data 21

2.2 Conditionals and Loops 43

2.3 Arrays 79

2.4 Functions (static methods) 80

2.5 Recursion 81

2.6 Input and Output 82

3

Object-Oriented Programming

. 137

3.1 Data Types and Java Classes 137

3.2 Modular Programming 137

3.3 Encapsulation and ADTs 137

3.4 Inheritance 137

x

An Introduction to Computer Science

4

Fundamental ADTs

 185

4.1 Linked Structures 185

4.2 Stacks and Queues 185

4.3 Priority Queues 185

4.4 Symbol Tables 185

4.5 Graphs 185

5

A Computing Machine

 239

5.1 Data Representations 239

5.2 TOY machine 239

5.3 Instruction Set 239

5.4 Machine-Language Programming 239

5.5 TOY Simulator 239

6

Building a Computer

 283

6.1 Boolean Logic and Gates 283

6.2 Combinational Circuits 283

6.3 Sequential Circuits 283

6.4 Components 283

6.5 TOY Machine Architecture 283

7

Theory of Computation

 341

7.1 Languages and Finite-State Automata 341

7.2 Turing Machines 341

7.3 General-Purpose Computers 341

7.4 Computability 341

xi

7.5 Chomsky Hierarchy 341

7.6 Proving Properties of Programs 341

8

Systems

 387

8.1 Library Programming 387

8.2 Compilers, Interpreters, and Emulators 387

8.3 Operating Systems 387

8.4 Networks 387

8.5 Applications Systems 387

9

Scientific Computation

 441

9.1 Precision and Accuracy 441

9.2 Symbolic Methods 441

9.3 Linear Algebra 441

9.4 Solution of Differential Equations 441

9.5 Data Analysis 441

9.6 Simulation 441

10

Analysis of Algorithms

 487

10.1 Predicting Performance 487

10.2 Guaranteeing Performance 487

10.3 Reduction 487

10.4 Computational Complexity 487

10.5 Intractability 487

10.6 Case Studies 487

xii

An Introduction to Computer Science

1

1

Overview

1.1 A Simple Machine

1.2 Applications

1.3 Analysis

1.4 Context

2

Overview

An Introduction to Computer Science

21

2

Elements of Programming

Our goal in this chapter is to convince you that writing a program is easier

than writing a piece of text such as a paragraph or an essay. Writing prose is

difficult: we spend many years in school to learn how to do it. By contrast, just

a few building blocks suffice to take us into a world where we can harness the

computer to help us solve all sorts of fascinating problems that would be oth-

erwise unapproachable. In this chapter, we take you through these building

blocks, get you started on programming in Java, and study a variety of interest-

ing programs. You will have an additional avenue to be able to express yourself

(writing programs) within just a few weeks. Like the ability to write prose, the

ability to program is a lifetime skill that you can continually refine and is cer-

tain to serve you well into the future.

You will learn the Java programming language, but that will be much

easier to do than learning a foreign language that is unfamiliar to you.

Indeed, programming languages are characterized by no more than a few

dozen vocabulary words and rules of grammar. Most of the material that we

cover in this chapter could apply to the C or C++ languages, or any of several

other modern programming languages, but we describe everything specifi-

cally in Java so that you can get started creating and running programs right

away. On the one hand, to the extent possible, we will focus on learning to

program, as opposed to learning details about Java. On the other hand, part

of the challenge of learning to program is knowing which details are relevant

in a given situation. Java is widely available, but also learning to program in

Java will make it easy for you learn to program in another language.

22

Elements of Programming

A

N

 I

NTRODUCTION

TO

 C

OMPUTER

 S

CIENCE

2.1 Your First Program

In this section, our plan is to lead you into world of Java programming by tak-

ing you through the basic steps required to get a simple program running. The

Java system is a collection of applications not unlike any of the other applica-

tions that you are accustomed to using (such as your word processor, e-mail

program, or internet browser). As with any application, you need to be sure

that Java is properly installed on your computer. It comes preloaded on may

computers and is easy to download. You also need an editor and a terminal

application (see Appendix X).

Programming in Java.

To introduce you to developing computer pro-

grams written in Java, we break the process down in to three steps. To pro-

gram in Java you need to:

1.

create

 the program by typing it into a file named, say,

MyProgram.java

2.

compile

 it by typing

javac

MyProgram.java

 in a terminal window

3.

run

 (or

execute

) it by typing

java MyProgram

In the first step, you start with a blank page and end with a sequence of typed

characters on the page, just as when you write an e-mail or a paper. In the sec-

ond step, you use a system application called a

compiler

 that translates your

program into a form more suitable for the computer (and puts the result in a

file named

MyProgram.class

). In the third step, you transfer control of the

computer from the system to your program (which returns control back to

the system when finished).

Creating a program.

A program is nothing more than a sequence of char-

acters, like a sentence, a paragraph, or a poem. To create one, therefore, we

need only define that sequence of characters, in the same way as we do for e-

mail or any other computer application. Programmers usually use a simple

editor for this task with a fixed-width font to make it easier to line things up

vertically in the code.

Compiling a program.

At first, it might seem to you as though the Java

programming language is designed to be best understood by the computer.

Actually, to the contrary, the language is designed to be best understood by

Your First Program

23

the programmer (that’s you). The computer’s language is more primitive

than Java, as we shall see in Chapter 5. A

compiler is an application that trans-

lates program from the Java language to a language more suitable for execut-

ing on the computer. It takes a file with a .java extension as input (your

program) and produces a file with the same name but with a .class exten-

sion (the computer-language version). To use the compiler to compile a pro-

gram, type the javac command followed by the program name in a terminal

window. Most systems have other ways to interact with the compiler; we

choose this one here because its use is simple and compact to describe.

Executing a program. Once it has been compiled, we can run the pro-

gram. This is the exciting part, where your program actually takes control of

your computer (within the constraints of what the Java system allows). It is

perhaps more acurate to say that the computer follows your instructions.

Program 2.1.1 is an example of a complete Java program. Its name is

HelloWorld, so that its code must reside in a file named HelloWorld.java

(by convention in Java). The program’s sole action is to print a message back

to the terminal window. For continuity, we will use some standard Java terms

to describe the program without defining them until Section X, but you do

not now need to know details of these definitions: Program 2.1.1 consists of a

single class named HelloWorld that has a single method named main() that

uses a method named println() from Java’s System.out library to do the

job. for the time being, you can think of “class” as meaning “collection of

programs” and “method” as meaning “program.” When referring to meth-

ods, we use () after the name to distinguish method names from other kinds

of names.

Since the 1970s, it has been a tradition that everyone learning to pro-

gram should start with HelloWorld, so you should type it into a file, compile

it, and run it. By doing so, you will not just be following in the footsteps of

countless other people who have learned how to program, but you also will

be checking that you have a usable editor and terminal emulator (see Appen-

dix X) and that your Java system is properly installed.

A method comprises a signature, which has its name and other infor-

mation, and a block, which is sequence of statements enclosed in braces and

each followed by a semicolon. The statements in a method’s block are exe-

24 Elements of Programming

AN INTRODUCTION TO COMPUTER SCIENCE

cuted, one by one, when the method is invoked. One type of statement is a

method name with, in parentheses, zero or more arguments. When we write

a such a statement, we are simply saying that we want to run that method

(and to provide it with some information, in the arguments). This process is

known as invoking or calling the method. In HelloWorld, the main method

consists of a single statement that calls the Java library method Sys-

tem.out.println(). The name of the method is println(); the name of

the library is System.out. You will be writing programs that use calls to many

different Java library methods, and you refer to each of them in just this way.

In Program 2.1.1, System.out.println() takes the message Hello, World

as its argument and prints it to the terminal. We do not need to know the

details of how System.out.println() accomplishes this task—we can sim-

ply rely on it to do so. The method main() itself takes an argument, which we

will discuss soon as the focus of Program 2.1.2.

At first, accomplishing the task of printing something out in a termi-

nal window might not seem very interesting; upon reflection, you will see

that one of the most basic capabilities that we need from a program is for it to

be able to tell us what it is doing.

For the time being, all our program code will be just like

Program 2.1.1, except with a different sequence of statements in main(). We

Program 2.1.1 Hello, World

public class HelloWorld
 {
 public static void main(String[] args)
 {
 System.out.println(“Hello, World”);
 }
 }

This code is a complete Java program

that accomplishes a simple task

(printing a message on the terminal

window). It is traditionally a begin-

ning programmers’ first program .

% javac HelloWorld
% java HelloWorld
Hello, World

Your First Program 25

will develop a more detailed understand of everything in HelloWorld.java

in due time: for the moment, you do not need to start with a blank page to

write a program, because you can

• copy HelloWorld.java into a new file whose name is a new program
name of your choice, followed by .java
• replace HelloWorld with the program name on the first line
• replace the System.out.println() statement by a sequence of state-
ments (each ending with a semicolon).

Each Java program must reside in a file whose name matches the name after

the word class on the first line and has a .java extension. In the next two

sections, you will learn all kinds of different statements that you can put

together to make a program; for the moment, we will just use Sys-

tem.out.println() and its cousin System.out.print() (which does the

same thing except without starting a new line after printing the message).

Errors. In modern interactive systems like Java, we sometimes blur the

distinction among editing, compiling, and executing programs, but it is

worthwhile to keep them separate in your mind when you are learning to

program. The main reason to do so is to understand the effects of the errors

that inevitably crop up. Several examples of errors are discussed in the Q&A

and the exercises at the end of this section. Most errors are easily fixed by

carefully examining the program as we create it, in just the same way as we fix

spelling and grammatical errors when we type an e-mail message. Some other

errors are caught when we compile the program, because they prevent the

compiler from doing the translation (so it issues an error message that tries to

explain why). Many other errors, called bugs, do not show up until we execute

the program. Errors are the bane of a programmer’s existence: the compiler’s

error messages can be confusing or misleading, and bugs can be very hard to

find. One of the very first skills that you will learn is to identify errors; one of

the next will be to be sufficiently careful when coding to avoid many of them.

Program 2.1.2 uses three statements to accomplish a more compli-

cated task than simply printing a message. Whenever this program is exe-

cuted, it reads the command-line argument that you type after the program

name and prints it back out to the terminal as part of the message. The result

of executing this program depends on what we type after the program name.

26 Elements of Programming

AN INTRODUCTION TO COMPUTER SCIENCE

After compiling the program once, we can run it for different command-line

arguments and get different results.

As with your first program, we will discuss in more detail the mech-

anism that we use to pass arguments to our programs later, in Section X. In

the meantime, you can do so by using args[0] to represent the argument,

just as in Program 2.1.2.

Again, accomplishing the task of getting a program to write back out

what we type in to it may not seem interesting at first, but upon reflection you

will see that another basic capability that we need from a program is for it to

be able to respond to basic information from the user to control what it does.

The simple model that Program 2.1.2 represents will suffice to allow us to

consider Java’s basic programming mechanism and to address all sorts of

interesting computational problems. Later, we will consider refinements to

this simple model that incorporate more sophisticated mechanisms for pro-

gram input and output.

Program 2.1.2 Using a command-line argument

public class Hi
 {
 public static void main(String[] args)
 {
 System.out.print(“Hi, “);
 System.out.print(args[0]);
 System.out.println(“. How are you?”);
 }
 }

This program shows the way in which

we can control the actions of our pro-

grams: by providing an argument on

the command line. Doing so allows us

to tailor the behavior of our programs.

% javac Hi.java
% java Hi Alice
Hi, Alice. How are you?
% java Hi Bob
Hi, Bob. How are you?

Your First Program 27

S t e p p i n g b a c k , w e c a n s e e t h a t

Program 2.1.2 does no more nor no less

than implement a function that maps a

string of characters (the argument) into

another string of characters (the message

printed back to the terminal). When using

it, we might think of our Java program as a

black box that converts our input string to

some output string. This model is attrac-

tive because it is very simple, but also suf-

ficiently general to allow completion of

any computational task. For example, the

Java compiler itself is nothing more than a

program that takes one string of charac-

ters as input (a .java file) and produces another string of characters as out-

put (the corresponding .class file). While we stop short of programs quite

that complicated, we will be able to consider and to write programs that

accomplish a variety of interesting tasks.

Q&A

Q Why Java?

A The programs that we are writing are very similar to their counterparts in

several other languages, so our choice of language is not crucial.. We use Java
because it is widely available, embraces a full set of modern abstractions, and
has a variety of automatic checks for mistakes in programs, so it is suitable for
learning to program. There is no perfect language, and you certainly will find
yourself programming in other languages in the future.

Q What are Java’s rules regarding tabs, spaces and newline characters?

A There are not many. Java translators treat them all to be equivalent. For

example, we could also write Program 2.1.1 as follows:

public class HelloWorld { public static void main (String[]

 args) {System.out.println(“Hello, World”);}}

Alice

Hi, Alice.
How are you?

input string

output string

black box

A bird’s-eye view of a Java program

28 Elements of Programming

AN INTRODUCTION TO COMPUTER SCIENCE

But we do normally adhere to spacing and indenting conventions when we

write Java programs, just as we always indent paragraphs and lines consis-

tently when we write prose or poetry.

Q What are the rules regarding quotation marks?

A Material inside quotation marks is an exception to the rule of the previous

question: things within quotes have to be taken literally so that you can
precisely specify what gets printed out. If you put any number of successive
spaces within the quotes, you get that number of spaces in the output. If you
accidentally omit a quotation mark, the compiler may get very confused,
because it needs that mark to know the difference between characters in the
string you are defining and you program itself.

Q How do I print out a quotation mark, a newline, or a tab?

A Use \”, \n, or \t, respectively, within the quotation marks.

Q What happens when you omit a brace or misspell one of the words, like

public or static or main?

A It depends upon precisely what you do. Such errors are called syntax errors

and are usually caught by the compiler. But the compiler may not be able to
tell you exactly what mistake you made (for a profound reason that we will
discuss in Chapter 8), so it might print an error message that is hard to
understand. For example, if you make a program Bad.java that is exactly the
same as Program 2.1.1 except that you omit the first left brace (and change
the program name from HelloWorld to Bad), you get the following helpful
message:

% javac Bad.java

Bad.java:1: '{' expected

public class Bad

 ^

1 error

From this message, you might correctly surmise that you need to insert a left

brace. But if you omit only the second left brace, you get a less helpful

sequence of messages:

Your First Program 29

Bad.java:3: ';' expected

 public static void main(String[] args)

 ^

Bad.java:6: 'class' or 'interface' expected

 }

 ^

Bad.java:7: 'class' or 'interface' expected

^

Bad.java:3: missing method body, or declare abstract

 public static void main(String[] args)

 ^

4 errors

One way to get used to such messages is to intentionally introduce mistakes

into a simple program, then see what happens. Whatever the error message

says, you should treat the compiler as a friend, for it is just trying to tell you

that something is wrong with your program.

Q Can a program use more than one command-line argument?

A Yes, you can put several, though we normally use only a few. You refer to

the second one as args[1], the third one as args[2], and so forth.

Q Do I really have to type in the programs in the book to try them out?

A No, you can find them on the web site

http://www.cs.princeton.edu/IntroCS

which we refer to as the booksite. This site also has information about install-

ing and running Java on your computer, answers to some exercises, web

links, and other extra information that you might find useful or interesting.

For example, the booksite describes how to annotate code with comments, by

enclosing the comment in between /* and */ or by putting the comment at

the end of any line after //. We do not use comments in the book because the

text describes the code.

30 Elements of Programming

AN INTRODUCTION TO COMPUTER SCIENCE

Exercises

2.1.1 Write a program that prints the Hello, World message 10 times.

2.1.2 Describe what happens if, in HelloWorld.java, you omit

a public

b static

c void

d args

2.1.3 Describe what happens if, in HelloWorld.java, you misspell (by,
say, omitting the second letter)

a public

b static

c void

d args

2.1.4 Describe what happens if you try to execute Program 2.1.2 with

a java Hi

b java Hi @!&^%

c java Hi 1234

d java Hi.class Bob

e java Hi.java Bob

f java Hi Alice Bob

2.1.5 Modify Hi.java to make a program HiThree.java that takes three
names and prints out a proper sentence with the names in the reverse of
the order given, so that, for example, java HiThree Alice Bob Carol
gives Hi Carol, Bob, and Alice.

Primitive Types of Data 21

2.1 Primitive Types of Data

A data type is a set of values and a set of operations defined on them. For

example, we are familiar with numbers and with operations defined on them

such as addition and multiplication. In mathematics, we are accustomed to

thinking of the set of numbers as being infinite; in computer programs we have

to work with a finite number of possibilities. In Java, you must always be

aware of the type of the data that your program is processing.

There are eight different built-in types of data (called primitive types)

in Java, mostly for different kinds of numbers. Of the eight primitive types,

we most often use three: int for integers; double for real numbers; and

boolean for true-false values. There are other types of data (called system

types) available in Java libraries: for example, the only type used in the pro-

grams in Section 2.1 is the system type String for strings of characters. We

consider the String type in this section because its usage for input and out-

put is essential. Accordingly, it shares some characteristics of the primitive

types: for example, some of its operations are built in to the Java language.

Beyond primitive types and system types, we can build our own data types:

indeed, programming in Java is often centered around doing so, as we shall

see in Chapter 3.

After defining some basic terms, we will consider several sample pro-

grams that illustrate use of different types of data. These programs still do not

do much real computing, but understanding types is an essential step in

beginning to program and sets the stage for us to begin working with more

intricate programs in the next section.

Basic definitions. To talk about data types, we need to define a number of

terms, which are illustrated in the following simple four-statement Java pro-

gram fragment:

int a, b, c;

a = 1234;

b = 99;

c = a + b;

The first statement is a declaration that declares three variables with the iden-

tifiers a, b, and c to be of type int. The next three statements are assignment

22

AN INTRODUCTION TO COMPUTER SCIENCE

statements that change the values of the variables, using the literals 1234 and

99, with the end result that c has the value 1243.

Identifiers. We use identifiers to name variables (and many other things) in

Java. An identifier is a sequence of letters, digits, _ and $, the first of which is

not a digit. The sequences of characters abc, Ab$, abc123, and a_b are all

legal Java identifiers, but Ab*, 1abc, and a+b are not.

Literals. For each of the primitive data types, Java defines ways to specify its

values. To specify an integer, we use a string of digits like 1234 or 99 to define

int literal values. To specify a real number, we add a decimal point as in

3.14159 or 2.71828 to define double literal values. To specify a boolean

value, we use the keywords true or false. We will consider other literals as

we consider each type in more detail.

Variables. A variable is an instance of a data type. We create one by declaring

its type and giving it a name; we compute with it by using the name in an

expression that uses operations defined for its type. Each variable has one of

the data-type values.

Declarations. We always use declarations to specify the names and types of

variables in our programs. By doing so, we are being explicit about any com-

putation that we are specifying. The Java compiler checks for consistency (for

example, it does not make sense to multiply a String by a double) and trans-

lates to the appropriate machine code.

Assignment statements. When we write a = b + c in Java, we are not express-

ing mathematical equality, but are instead expressing an action: set the value

of the variable a to be the value of b plus the value of c. It is true that a is

mathematically equal to b + c after the assignment statement has been exe-

cuted, but the point of the statement is to change the value of a (if necessary).

The left-hand side of an assignment statement must be a single variable

(identifier); the right-hand side can be an arbitrary expression that uses oper-

ators defined for the type. For example, we can say discriminant = b*b -

4*a*c in Java, but we do not say a + b = b + a or 1 = a , and a = b is

certainly not the same as b = a.

Primitive Types of Data 23

Expressions. We can use parentheses to specify compound operations to

compute a value just as in mathematical formulas. For example, we can write

(x + 1) * (x + 1) or x*x + 2*x + 1 on the right-hand side of an assign-

ment statement and the compiler will understand what we mean. An expres-

sion is shorthand for specifying a sequence of computations: in what order

should they be performed? Java has natural and well-defined precedence rules

(see Appendix X) that fully specify this order. For arithmetic operations,

multiplication and division are performed before addition and subtraction.

When the precedence rules do not lead to the computation that you want,

you can use parentheses.

Functions. Some methods implement functions—they use their arguments to

compute a value of a specified type. Besides variables and literals, we can use

method names (with arguments) in expressions, when we do so, we are

expecting that method to compute a value of the appropriate type. Method

arguments may also be expressions. Many familiar functions are imple-

mented in Java’s Math libarary (see Appendix X). Thus, we can write expres-

sions like Math.sin(x)*Math.cos(y) and so on.

For economy, we can combine a declaration with an assignment

statement to provide an initial value for the variable (otherwise, the value is

undefined). Declarations can appear anywhere in a program before a variable

is used—most often, we put them at the point of first use, as in this version of

the program fragment that we started with.

int a = 1234;

int b = 99;

int c = a + b;

In older programming languages, it was required that all declarations appear

at the beginning of a piece of code, and it is legal to do so in Java. We some-

times use this convention in small programs with multiple variables (for an

example, see Program 2.1.2), but most often we put declarations at the point

of first use.

To understand how to use a primitive data type, you need to know its

defined set of values, which operations you can perform, and how to specify

literals. Next, we consider these details for characters, strings, integers, float-

24

AN INTRODUCTION TO COMPUTER SCIENCE

ing point numbers, and true–false values, along with sample programs that

illustrate their use.

Characters and Strings. A char is an alphanumeric character or symbol,

like the ones that you type. There are different possible character values,

but we usually restrict attention to the ones that represent letters, numbers,

symbols, and white-space characters like tab and newline. To specify a char-

acter as a char literal, we enclose it in single quotes: 'a' represents the

letter a. For tab, newline, single quote and double quote, we use the special

escape sequences \t, \n, \', and \", respectively. The characters are encoded

as 16-bit integers using an encoding scheme known as Unicode, and there are

escape sequences for specifying any special character (see Appendix X). We

usually do not perform any operations on characters other than assigning

values to variables and using the comparison functions defined later in this

section, so we move immediately on to other data types.

 A String is a sequence of characters. A literal String is a sequence

of characters within double quotes, like "Hello, World". The String data

type is not a primitive type, but Jave sometimes treats it like one. For example,

one of the most common operations that we perform on Strings is built in

to the Java language. That operation is known as concatenation: given two

strings, chain them together to make a new string. The symbol for concate-

nating strings in Java is + (the same symbol that we use for adding numbers).

For example, the following Java code fragment is like the one that we consid-

ered at the beginning of this section, but it uses Strings instead of ints:

String a, b, c;

a = "1234";

b = "99";

c = a + b;

As before, the first statement declares three variables to be of type String and

the next three assign values to them. In this case, the end result that c has the

value "123499".

We use the concatenation operation frequently to put together

results of computation in output. For example we could make Program 2.1.2

much simpler by replacing its three statements by this single statement:

2
16

Primitive Types of Data 25

System.out.println("Hi, " + args[0] + ". How are you?");

The concatenation operation (along with the ability to declare String vari-

ables and to use them in expressions and assignment statements) is suffi-

ciently powerful to allow us to attack some nontrivial computing tasks, as

illustrated in Program 2.1.1 and Exercise 2.1.18.

How do we print out the values of other types of data? To print out

anything, we need to convert it from its internal representation to a String.

Similarly, when we put a value on the command line, we type a string of char-

acters: if we want to process the data that the string represents, we must con-

vert the string to the appropriate internal reservation for that type of data.

Program 2.1.1 String-concatenation example

public class Ruler
 {
 public static void main(String[] args)
 {
 String ruler1 = “1 “;
 String ruler2 = ruler1 + “2 “ + ruler1;
 String ruler3 = ruler2 + “3 “ + ruler2;
 String ruler4 = ruler3 + “4 “ + ruler3;
 System.out.println(ruler1);
 System.out.println(ruler2);
 System.out.println(ruler3);
 System.out.println(ruler4);
 }

}

This program prints the relative

lengths of the subdivisions on a ruler,

as shown, for example, by the lines at

right for the third line. The length of

the output of this program grows

exponentially: the nth line has

numbers on it.

% javac Ruler
% java Ruler
1
1 2 1
1 2 1 3 1 2 1
1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

2
n

1–

26

AN INTRODUCTION TO COMPUTER SCIENCE

Converting from one type of data to another is an important issue that we

often need to face when writing programs; we will discuss it at length at the

end of this section. We are discussing type conversion to and from String

briefly now so that we can write sample programs that take command-line

arguments and print out values for various types of data.

To convert from one type of data to another, we might explicitly call

a system method or we might expect the system to automatically do the con-

version. In Java, we normally use the former approach for input from the

command line and the latter for output.

For input from the command line, we explicitly use system methods

to convert from String to the appropriate type. For example, the system

method Integer.parseInt takes a string parameter and converts the given

string of digits to an int. For output, we take advantage of the concatena-

tion operator and Java’s automatic type conversion facility to write statements

like this one:

System.out.println(a + " + " + b + " = " + (a+b));

If a and b are int variables with the values 1234 and 99, respectively, then this

statement prints out the string 1234 + 99 = 1243. This usage takes advan-

tage of the Java convention that if one of the operands of + is a String, then

the other is automatically converted to a String so that the + is interpreted as

concatenation. We will discuss the specific rules for such conversions in more

detail at the end of this section, after we have discussed properties of each of

the types.

Integers. An int is an integer (whole number) between and

. These bounds derive from the fact that integers are represented

in binary with with 32 binary digits: there are possible values. (The term

binary digit is omnipresent in computer science, so the abbreviation bit is

always used: a bit is either 0 or 1.) The range of possible int values is asym-

metric because 0 is included with the positive values. We will consider num-

ber representations in detail in Chapter 5 (see also Appendix X); in the

present context it suffices to know that an int is one of the finite set of values

in the range just given. We use ints frequently not just because they occur

2147483648–

2147483647

2
32

Primitive Types of Data 27

frequently in the real world, but also they naturally arise when expressing

algorithms.

Standard arithmetic operators for addition/subtraction (+ and -),

multiplication (*), division (/), and remainder (%) for the int data type are

built in to Java. These operators take two int arguments and produce an int

result, with one significant exception: division or reminder by 0 is not

allowed. These operations are defined just as in grade school: Given two ints

a and b, the value of a / b is the number of times b goes into a and the value

of a % b is the remainder that you get when you divide a by b. The int result

that we get from these operations is just what we expect from the grade-

school definition, with one significant exception: if the result is too large to fit

into the 32-bit representation described above, then it will be truncated to the

Program 2.1.2 Integer multiplication and division

public class IntOps
 {
 public static void main(String[] args)
 {
 int a, b, p, q, r;
 a = Integer.parseInt(args[0]);
 b = Integer.parseInt(args[1]);
 p = a * b;
 q = a / b;
 r = a % b;
 System.out.println(a + “ * “ + b + “ = “ + p);
 System.out.println(a + “ / “ + b + “ = “ + q);
 System.out.println(a + “ % “ + b + “ = “ + r);
 System.out.print(a + “ = “);
 System.out.println(q + “ * “ + b + “ + “ + r);
 }
}

Arithmetic on integers is built in to

Java. Most of this code is devoted to

the tasks of getting the values in and

out; the actual arithmetic is in the

simple statements like p = a * b.

% javac IntOps
% java IntOps 1234 99
1234 * 99 = 122166
1234 / 99 = 12
1234 % 99 = 46
1234 = 12*99 + 46

28

AN INTRODUCTION TO COMPUTER SCIENCE

least significant 32 bits. We have to take care that such a result is not misinter-

preted by our code.

Integer literals are just strings of decimal integers, as in the code frag-

ment above. To use integer parameters on the command line, we need to use

the built-in Java method Integer.parseInt, which converts string values to

integer values. When we type a number as a command-line parameter, it is a

string of characters, so we have to include a statements that calls with Inte-

ger.parseInt to convert it to an integer at execution time; if we type the

same string of characters within the program, the compiler interprets it as a

literal integer and does the conversion at compile time. Program 2.1.2 illus-

trates these basic operations for manipulating integers.

Three other built-in types are different representations of integers.

The long, short, and byte types are the same as int except that they use 64,

16, and 8 bits respectively, so the range of allowed values is accordingly differ-

ent. Programmers use long when working with huge integers and the others

to save space. Appendix X gives a table with the maximum and minimum val-

ues for each type.

Real numbers. The double type is for representing floating-point num-

bers, for use in scientific and commercial applications. The internal represen-

tation is like scientific notation, so that we can compute with numbers in a

huge range. Floating-point numbers are not the same as real numbers, pri-

marily because there are an infinite number of real numbers, and we can only

represent finitely many numbers in any digital computer representation.

Floating-point numbers do approximate real numbers sufficiently well that

we can use them in all sorts of applications, but we often need to cope with

the fact that we cannot always do exact computations.

We can use a string of digits with a decimal point to type floating-

point numbers. For example, 3.14159 represents a six-digit approximation

to . Alternatively, we can use a notation like scientific notation: the literal

6.022E23 represents the number . As with integers, you can use

these conventions to write floating-point literals in your programs or to pro-

vide floating-point numbers as string parameters on the command line.

The arithmetic operators +, -, *, and / are defined for double. The

result of a calculation can be 0 (if the number is too small to be represented)

!

6.022 10
23

×

Primitive Types of Data 29

or one of the special values Infinity (if the number is too large to be repre-

sented) or NaN (if the result of the calculation is undefined). Beyond the built-

in operators, the Java Math library defines the square root, trigonometric

functions, logarithm/exponential functions and other common functions for

floating-point numbers (see Appendix X).

There are myriad details to consider with regard to precision and

when calculations involve 0, infinity or NaN (see Appendix X and the Q&A

and exercises at the end of this section) but you can use these operations in a

natural way for all sorts of familiar calculations. With this library, you can

begin to write Java programs instead of using a calculator for all kinds of cal-

culations. For example, Program 2.1.3 shows the use of doubles in comput-

ing roots of a quadratic equation using the quadratic formula. Several of the

exercises at the end of this section further illustrate this point.

Program 2.1.3 Quadratic formula

public class Quadratic
 {
 public static void main(String[] args)
 {
 double b = Double.parseDouble(args[0]);
 double c = Double.parseDouble(args[1]);
 double discriminant = Math.sqrt(b*b - 4.0*c);
 System.out.println((-b + discriminant) / 2.0);
 System.out.println((-b - discriminant) / 2.0);
 }
 }

This program prints the roots of the

polynomial , using the

quadratic formula. For example, the

roots of are and since

we can factor it as ; the

roots of are and ,

where is the golden ratio; and the

roots of are not real num-

bers.

% javac Quadratic
% java Quadratic -3.0 2.0
2.0
1.0
% java Quadratic -1.0 -1.0
1.618033988749895
-0.6180339887498949
% java Quadratic 1.0 1.0
NaN
NaN

x
2

bx c+ +

x
2

3x– 2+ 1 2

x 1–() x 2–()

x
2

x– 1– " 1 "–

"

x
2

x 1+ +

30

AN INTRODUCTION TO COMPUTER SCIENCE

As with short and byte for integers, there is another representation

for real numbers, called float, that programmers sometimes use to save

space when precision is a secondary consideration. The double type is useful

for about 15 significant digits; the float type is good for only about 7 digits.

We rarely use float in this book.

Booleans. The boolean type has just two values: true or false. These

are the two possible boolean literals, every boolean variable has one of these

two values, and every boolean operation has operands and a result that takes

on just one of these two values. This apparent simplicity is deceiving—bool-

eans lie at the foundation of computer science, as we will see throughout this

book.

The most important operators defined for booleans are for the and

(&&), or (||), and not (!) functions, which are listed in the table below along

with two different descriptions of each of their meanings:

Although these definitions are intuitive and easy to understand, it is worth-

while to fully specify each possibility for each operation, as in the following

tables. Such tables are known as truth tables.

The not function (on the left) has only one operand: its value for each of the

two possible values of the operand is specified in the second column. The and

and &&
a && b is true if both a and b are true
a && b is false if either a or b are false

or ||
a || b is true if either a or b are true

a || b is false if both a and b are false

not !
!a is true if a is false
!a is false if a is true

a !a a b a && b a || b

true false false false false false

false true false true false true

true false false true

true true true true

Primitive Types of Data 31

and or functions each have two operands: there are four different possibilities

for operand input values, and the values of the functions for each possibility

are specified in the right two columns.

We can use these operators with parentheses to develop arbitrarily

complex expressions, each of which specifies a well-defined boolean function.

Often, the same function appears in different guises. For example, the

expressions (a && b) and !(!a || !b) are equivalent.

The study of manipulating expressions of this kind is known as Bool-

ean logic and is the subject of Section 5.1. This field of mathematics is funda-

mental to computing. For example, Boolean logic plays an essential role in

the design and operation of computer hardware itself, as we will see in Chap-

ter 5. It also helps us understand fundamental limitations on what we can

compute, as we will see in Chapter 8.

Program 2.1.4 Computing with boolean values

public class LeapYear
 {
 public static void main(String[] args)
 {
 boolean isLeapYear;
 int year = Integer.parseInt(args[0]);
 isLeapYear = year % 4 == 0;
 isLeapYear = isLeapYear && (year % 100 != 0);
 isLeapYear = isLeapYear || (year % 400 == 0);
 System.out.println(isLeapYear);
 }
 }

This program tests whether an integer

corresponds to a leap year in the Gre-

gorian calendar. A year is a leap year

if it is divisible by 4 (2004) unless it is

divisible by 100 in which case it is not

(1900), unless it is divisible by 400 in

which case it is (2000).

% javac LeapYear
% java LeapYear 2004
true
% java LeapYear 1900
false
% java LeapYear 2000
true

32

AN INTRODUCTION TO COMPUTER SCIENCE

In the present context, we are interested in boolean expressions

because we use them to control the behavior of our programs. Typically, a

particular condition of interest is specified as a boolean variable and a piece

of program code is written to execute one set of statements if the variable is

true and a different set of statements if the variable is false. The mechanics

of doing so are the topic of Section X.

Comparisons. Some mixed-type operations take operands of one type and

produce a result of another type. The most important built-in operations of

this kind are the comparison operations ==, !=, <, <=, >, and >=, which all are

defined for each primitive numeric type and which all produce a boolean

result. As we will see in Section X, these operations play a critical role in the

process of developing programs more sophisticated than the sequence-of-

statements programs that we have been considering. The meanings of these

operations are summarized in the following table:

Since operations are defined only with respect to data types, each of these

symbols stands for many operations, one for each data type. It is required

that both operands be of the same type, and the result is always boolean.

Even without going into the details of number representation that we con-

sider in Section X, it is clear, on reflection, that the operations for the various

types are really quite different: for example, it is one thing to compare two

ints to check that 2 == 2 is true but quite another to compare two doubles

to check whether 2.1 == .0021E3 is true or false.

op a op b true false

== equal a is equal to b 2 == 2 2 == 3

!= not equal !(a == b) 3 != 2 2 != 2

< less than a is less than b 2 < 13 2 < 2

<= less than or equal (a < b) || (a == b) 2 <= 2 3 <= 2

> greater than !(a <= b) 13 > 2 2 > 13

>= greater than or equal !(a < b) 3 >= 2 2 >= 3

Primitive Types of Data 33

Comparison operations, with boolean logic, provide the basis for

decision-making in Java programs. Program 2.1.4 is a simple example of

their use, and you can find other examples in the exercises at the end of this

section. In Section 2.2 we will see the critical role that such expressions play

in controlling the flow of execution of the statements in our programs.

Type conversion. One of the first rules of programming in Java is that you

should always be aware of the type of data that your program is processing.

Only by knowing the type can you know precisely what set of values each

variable can have, what literals you can use, and what operations you can per-

form. But typical programming tasks involve processing multiple types of

data, and we often need to be able to convert data from one type to another.

There are several ways to do so in Java.

Explicit type conversion. You can use a method that takes an argument of one

type (the value to be converted) and returns a result of another type. For

example, the library method Math.round takes a double argument and

returns an long result: the nearest integer to the argument. Thus, for exam-

ple, Math.round(3.14159) and Math.round(2.71828) are both of type

long and have the same value (3). Our use of the library methods Inte-

ger.parseInt and Double.parseDouble in the programs in this section

are also examples of this kind of conversion. In Section 2.4, you will learn

how to implement such methods.

Automatic conversion for numbers. You can use data of any primitive numeric

type where a value whose type has a larger range of values is expected. Java

automatically converts to the type with the larger range. For example, we

used numbers all of type double in Program 2.1.3, so there is no conversion,

but we might instead have chosen to make b and c of type int (using Inte-

ger.parseInt to convert the command-line arguments). Then the expres-

sion b*b-4.0*c requires type conversion, which Java would do

automatically: first, it would covert c to double and multiply by the double

literal 4.0 to get a double result. As for the other term, it would compute the

value b*b and then convert to double for the subtraction, leaving a double

result. Or, we might have written b*b - 4*c. In that case, the program would

evaluate the expression b*b - 4*c as an int and then automatically convert

34

AN INTRODUCTION TO COMPUTER SCIENCE

the result to double, because that is what Math.sqrt expects. Java does this

kind of type conversion automatically because your intent is clear and it can

do so with no loss of information. On the other hand, if the conversion might

involve loss of information, for example if you try to assign a double to an

int, you will get an error message from the compiler.

Explicit cast. Java has some built-in type conversion methods for primitive

types that you can use when you are aware that you might lose information,

but you have to make your intention to do so explicit using a device called a

cast. You cast a variable or an expression from one primitive type to another

simply by prepending the desired type name within parentheses: for example,

the expression (int) 3.14159 is a cast from double to int that is of type

int with value 3. Java has built-in conversion methods defined for casts

among primitive numeric types that implement reasonable and convenient

approaches to throwing away information (for a full list, see Appendix X).

Program 2.1.5 Casting to get a random integer

public class RandomInt
 {
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 double r = Math.random();
 int n = (int) (r * N);
 System.out.println(n);
 }
 }

This program uses the Java method

Math.random to get a random num-

ber between 0 and 1, then multiplies

it by the command-line argument N

to get a random number between 0

and N, then uses a cast to truncate the

result to be an integer between 0 and

N-1.

% javac RandomInt
% java RandomInt 1000
548
% java RandomInt 1000
141
% java RandomInt 1000000
135032

Primitive Types of Data 35

One that we use frequently is to cast a floating-point number to an integer:

the built-in method throws away the fractional part by rounding towards

zero. If you want a different result, such as rounding to the nearest integer,

you must use the explicit conversion method Math,round, as just discussed

(but you then need to use an explicit cast to int, since that method returns a

long). Program 2.1.5 is an example that uses a cast for a practical computa-

tion.

Automatic conversion for strings. As mentioned at the beginning of this sec-

tion, the Java built-in String type obeys special rules. One of these special

rules is that you can easily convert any type of data to a String: Java invokes

the appropriate method automatically whenever we use the + operator with

one of its operands a String, producing as a result the concatenation of the

String operand and the result of converting the non-String operand to a

String, in the order given. For example, the result of the code fragment

String a = "";

int b = 99;

String c = a + b;

is that c has the value "99". We use this automatic conversion liberally in our

programs: see Program 2.1.2 for an example.

Summary. A data type is a set of values and a set of operations on those

values. Java has eight primitive data types: boolean, char, byte, short, int,

long, float, and double. The boolean type is for computing with the logical

values true and false; the char type is the set of character values that we

type; and the other six are numeric types, for computing with numbers.

Another data type, String, is not primitive, but Java has some built-in facil-

ities for Strings that are like those for primitive types.

When programming in Java, we have to be aware that all operations

must be from the type of their operands (so we may need type conversions)

and that all types can have only a finite number of values (so we may need to

live with imprecise results).

The numeric types and Java’s libraries give use the ability to use Java

as an extensive mathematical calculator: we can use Java’s Integer.parseInt

and Double.parseDouble methods to convert command-line arguments to

36

AN INTRODUCTION TO COMPUTER SCIENCE

numeric values for primitive types, write expressions assigning values to vari-

ables using +, -, *, /, and % and Java methods from the Math library, and then

use automatic type conversion to String with the + operator and Java’s Sys-

tem.out.println method to output results. Each Java program is still a

black box that takes string arguments and produces string results, but we can

now interpret those strings as numbers and use them as the basis for mean-

ingful computation.

The boolean type and its operations &&, ||, and ! are the basis for

logical decision-making in Java programs, when used in conjunction with the

mixed-type comparison operators ==, !=, <, >, <=, and >=.

While the programs of this section are quite primitive by the stan-

dards of what we will be able to do after the next section, this class of pro-

grams is quite useful in its own right. You will use primitive types extensively

in Java programming, so the effort that you spend now understanding them

will certainly be worthwhile.

Q&A

Q What is the difference between = and ==?

A Your ability to answer this question is a sure test whether or not you

understood the material in this section. Read it again carefully to find the
answer, and then think about how you might explain the difference
(succinctly) to a friend.

Q What happens if you forget to declare a variable?

A The compiler complains, as shown below for a program IntOpsBad that is

the same as Program 2.1.2 except that the variable p is omitted from the
declaration statement.

javac IntOpsBad.java

IntOpsBad.java:7: cannot resolve symbol

symbol : variable p

location: class IntOpsBad

 p = a * b;

Primitive Types of Data 37

 ^

IntOpsBad.java:10: cannot resolve symbol

symbol : variable p

location: class IntOpsBad

 System.out.println(a + " * " + b + " = " + p);

 ^

2 errors

The compiler says that there are two errors, but there is really just one: the

declaration of p is missing. If you forget to declare a variable that you use

often, you may get quite a few error messages.

Q Why do int values sometimes turn into negative numbers when they get

large?

A If you have not experienced this phenomenon, see Exercise 2.1.9. The

problem has to do with the way integers are represented. You will learn the
details in Chapter 5. In the meantime, you can be safe with the strategy of
using the int type when you know the values to be small and the long type if
you think the values might get to be ten digits or more.

Q It seems wrong that Java should just let ints overflow and give bad values.

Is there something we can do about that?

A Yes, we will revisit this issue in Section 2.2 and in Chapter 4. The short

answer for now is that lack of such checking is one reason such types are
called primitive types. But a little knowledge can go a long way in avoiding
such problems. For example, it is fine to use the int type for small numbers,
but when values run into the billions, you need to use long.

Q Are there some other operations besides the basic arithmetic operations

defined for ints?

A There are a few defined in Math, such as max and min, but most functions

in the library are defined for doubles. You can sometimes use these by
converting to double and back again, but it is often simpler to define you
own function, as we will see in several examples in Section 2.4.

38

AN INTRODUCTION TO COMPUTER SCIENCE

Q It is annoying to see all those digits when printing a float or a double.

Can we get System.out.println to print out just two or three digits after
the decimal point?

A That sort of task involves a closer look at the method used to convert from

double to String. We will revisit this issue in Chapter 3; for now, we will live
with the extra digits (which is not all bad, since doing so helps us to get used
to the different primitive types of numbers).

Q How can you know for sure that (a && b) and !(!a || !b) are

equivalent?

A Build the truth tables. You can use the definitions to evaluate the

expressions for each of the four possibilities for the operands and see that the
truth tables match.

Q Why does 10/3 give 3 and not 3.333333333?

A Since both 10 and 3 are literal integers, Java sees not need for type

conversion and uses integer division. You should write 10.0/3.0 if you mean
the numbers to be double literals. If you write 10/3.0 or 10.0/3 Java does
implicit conversion to get the same result.

Q What is the value of Math.round(6.022E23)?

A You should get in the habit of typing in a tiny Java program to answer such

questions yourself (and trying to understand why your program produces the
result that it does).

Q Can you compare a double to an int?

A Not without doing a type conversion, but you usually need not worry

because Java usually does the requisite type conversion automatically. For
example, if x is an int with the value 3 then the expression (x < 3.1) is
true—Java converts x to double because 3.1 is a double literal and performs
the comparison.

Q Can you use < and > to compare String variables?

Primitive Types of Data 39

A No. Those operators are defined only for primitive types.

Q How about == and != ?

A You can use == to test String operands for equality, but the result may not

be what you expect, because of the distinction between a String and its
value. For example, "abc" == "ab" + x is false when x is a String with
value "c" because the two operands are different strings (albeit with the
same value). This distinction for nonprimitive types is essential, as you will
learn when we discuss methods for comparing String variables in Section X.

Q What is the result of division and remainder for negative integers?

A The quotient a/b is negative if and only if either a or b is negative; the

remainder a % b is defined such that (a/b)*b + a % b is always equal to a.
For example, -14/3 and 14/-3 are both -4, but -14 % 3 is -2 and 14%-3 is 2.

Q Are expressions like 1/0 and 1.0/0.0 legal in Java?

A No and yes. The first generates an arithmetic exception for division by 0;

the second has the value Infinity.

Q Fifteen digits certainly seems enough to me. Do I really need to worry

much about precision?

A Yes, because you are used to mathematics based on real numbers with

infinite cardinality, while the computer always is dealing with approxima-
tions. For example, (.1 + .1 == .2) is true but (.1 +.1 +.1 == .3) is
false! By printing out values of some simple expressions like these you can
learn quite a bit about precision. For example, see Exercise 2.1.12.

Exercises

2.1.1 What does the following sequence of statements do?

 t = x; x = y; y = t;

2.1.2 Write a program that uses Math.sin and Math.cos to check that
 for any entered as a command-line argument.#sin

2
#cos

2
+ 1= #

40

AN INTRODUCTION TO COMPUTER SCIENCE

2.1.3 Show that the expression (!(a && b) && (a || b)) || ((a &&
b) || !(a || b)) is equivalent to true.

2.1.4 Simplify the following expression: (!(a < b) && !(a > b))

2.1.5 The exclusive or function for boolean variables is defined to be true
if they are different, false if they are the same. Give a truth table for this
function.

2.1.6 Explain how to use Program 2.1.3 to find the square root of a
number.

2.1.7 What do each of the following print?

a System.out.println(2 + "bc");

b System.out.println(2 + 3 + "bc");
c System.out.println((2+3) + "bc");
d System.out.println("bc" + (2+3));
e System.out.println("bc" + 2 + 3);

2.1.8 What do each of the following print?

a System.out.println ('b');

b System.out.println ('b' + 'c');
c System.out.println((char) ('a' + 4));

2.1.9 Suppose that a variable a is declared as int a = 2147483647. What
do each of the following print?

a System.out.println(a);

b System.out.println(a+1);
c System.out.println(2-a);
d System.out.println(-2-a);
e System.out.println(2*a);
f System.out.println(4*a);

Explain each outcome.

2.1.10Suppose that a variable a is declared as double a = 3.14159. What
do each of the following print?

a System.out.println(a);

b System.out.println(a+1);
c System.out.println(8/(int) a);
d System.out.println((int) 8/a);
e System.out.println(8/a);
f System.out.println((int) (8/a));

Primitive Types of Data 41

Explain each outcome.

2.1.11Describe what happens if, in Program 2.1.3, you write sqrt instead
of Math.sqrt.

2.1.12What is the value of (Math.sqrt(2)*Math.sqrt(2) == 2)?

Creative Exercises

2.1.13Uniform random rumbers. Write a program that uses Math.random
to print ten uniform random values between 0 and 1 and then prints their
average value.

2.1.14Wind chill. Given the temperature T (in Fahrenheit) and the wind
speed V (in miles per hour), the National Weather Service defines the
effective temperature (the wind chill) to be:

Write a program that takes two integer command-line arguments T and V
and prints out the wind chill. Hint: use Math.pow(a, b) to compute .

2.1.15Loan payments. Write a program that calculates the monthly
payments you would have to make over a given number of years to pay off
a loan at a given interest rate. Your program should take three numbers as
command line parameters: the number of years, the principal, and the
interest rate.

2.1.16 Polar coordinates. Write a program that
converts from Cartesian to polar coordinates. Your
program should take two real numbers x and y that
are between 0 and 1 on the command line and print
the polar coordinates r and . Use the Java methods
Math.sqrt and Math.asin. Assume that x is not
zero.

2.1.17 Day of the week. Write a program to read in a date and tell you what
day of the week that date falls on. Your program should take three
command line parameters, M (month), D (day), and Y (year). For M, use

W 35.74 0.6125T 0.475T 35.75–()V
0.16

+ +=

a
b

r y

x

Polar coordinates

theta #

42

AN INTRODUCTION TO COMPUTER SCIENCE

1 for January, 2 for February, and so forth. For output, print 0 for Sunday,
1 for Monday, 2 for Tuesday, and so forth. Use the following formulas, for
the Gregorian calendar:

Example: On what day of the week was August 2, 1953?

Answer: Sunday.

2.1.18 Dragon curves. Write a program
to print the instructions for drawing
the dragon curves of order 0 through 5.
The instructions are strings of F, L, and
R characters, where F means “draw a
line 1 unit straight ahead,” L means
“turn left,” and R means “turn right.” A
dragon curve of order n is formed
when you fold a strip of paper in half n
times, then unfold to right angles. The
key to solving this problem is to note
that a curve of order n is a curve of

order followed by an L followed by a curve of order traversed
in reverse order, then to figure out a similar description for a curve in
reverse order.

y Y 14 M–() 12–=

x y y 4 y 100– y 400+ +=

m M 12 14 M–() 12()× 2–+=

d D x 31m() 12+ +() % 7=

y 1953 0– 1953= =

x 1953 1953 4 1953 100– 1953 400+ + 2426= =

m 8 12 0× 2–+ 6= =

d 2 2426 31 6×() 12+ +() % 7 0==

F

FLF

FLFLFRF

FLFLFRFLFLFRFRF

Dragon curves of order 0, 1, 2, and 3

n 1– n 1–

Conditionals and Loops 43

2.2 Conditionals and Loops

We use the term flow of control to refer to the sequence of statements that are

actually executed in a program. All of the programs that we have examined to

this point have a simple flow of control: all of the statements in the program

are executed, in the order given. In this section, we introduce statements that

allow us to change the flow of control, using logic about the values of program

varibles. This feature is an essential component of virtually every program we

will write from this point forward.

Specifically, we consider Java statements that implement conditionals,

where other statements (or groups of statements) may or may not be exe-

cuted depending on certain conditions; and loops, where other statements (or

groups of statements) may be executed multiple times, again depending on

certain conditions. As you will see in numerous examples in this section,

conditionals and loops truly harness the power of the computer and will

equip you to write programs to accomplish a broad variety of tasks that you

could not contemplate attempting without a computer.

If statements. Most computations require different actions for different

inputs. To express these differences in Java, we use the if statement:

if (<boolean expression>) <statement>

This description introduces a formal notation that we will use from now on

to specify the format of Java constructs. The notation is not difficult to under-

stand; indeed, it is nearly self-explanatory. We put within angle brackets (<>)

a construct that we have already defined, to indicate that we can use any

instance of that construct where specified. In this case, the notation says that

an if statement is the keyword if, followed by a boolean expression enclosed

in parentheses, followed by a statement. The meaning of an if statement is

also nearly self-explanatory: the statement after the boolean expression is to

be executed if and only if the boolean expression is true.

We use <statement> to mean either a statement like an assignment

statement or a method call (including a terminating semicolon) or a block of

statements (a sequence of statements, each terminated by a semicolon,

44

An Introduction to Computer Science

enclosed in curly braces). We have already been using blocks in our pro-

grams: the body of main is a block.

As a simple example of the need for conditional statements, consider

Program 2.1.4. You rarely will print out the value of a boolean as in that code;

instead, you can use an if statement to produce more friendly output: If you

replace the System.out.println statement in Program 2.1.4 by the three

statements

System.out.print(year + " is ");

if (!isLeapYear) System.out.print("not ");

System.out.println("a leap year");

then the output is more informative. If you make this change and run the

program with java LeapYear 2003, it will print 2003 is not a leap year.

You can also add an else clause to an if statement, to express the

concept of executing one statement or another, depending on whether the

conditional is true or false:

if (<boolean expression>) <statement T> else <statement F>

Program 2.2.1 Simulating a coin flip

public class Flip
 {
 public static void main(String[] args)
 {
 if (Math.random() > 0.5)
 System.out.println(“Heads”);
 else System.out.println(“Tails”);
 }
 }

This program uses Math.random to

simulate a coin flip. Each time you

run it, it prints either heads or tails. A

sequence of flips will have many of the

same properties as a sequence that

you would get by flipping a coin, but it

is not a random sequence.

% javac Flip.java
% java Flip
Heads
% java Flip
Tails
% java Flip
Tails

Conditionals and Loops 45

Class Flip in Program 2.2.1 is an example of the use of the if-else state-

ment, for the simple task of simulating a coin flip. To digress slightly, we note

that this simple program introduces an interesting philosophical issue that is

worth contemplating: Can we get a computer to produce random values? We

will return to this question on several occasions, because having numbers

with the properties of random numbers is critical for many practical applica-

tions.

The following table contains some more examples of the use of if

and if-else statements. These examples are typical of simple calculations

that you might need in programs that you write. They include examples of

simple functions and checks for possible error conditions in input data. Since

the semantics (meaning) of statements like these is similar to their meanings

as natural-language phrases, you will quickly grow used to using them.

absolute value if (x < 0) x = -x;

maximum of x and y
if (x > y) max = x;
else max = y;

income tax rate

if (income < 47450) rate = .22;
else if (income < 114650) rate = .25;
else if (income < 174700) rate = .28;
else if (income < 311950) rate = .33;
else rate = .35;

error check before
arithmetic operation

if (d == 0)
 System.out.println(“Division by zero”);
else
 System.out.println(“Quotient is” + n/d);

error check for
 quadratic formula

d = b*b - 4.0*c;
if (d < 0.0)
 System.out.println(“No real roots”);
else
 {
 d = Math.sqrt(d);
 System.out.println((-b + d)/2.0);
 System.out.println((-b - d)/2.0);
 }

46

An Introduction to Computer Science

The if and if-else statements have the same status as assignment state-

ments or any other statements in Java. That is, we can use them whenever a

statement is called for. However, when we use an if statement as <state-

ment T> or <statement F> within another if statement (as in the income-

tax-rate example in the table), we have to be careful to resolve ambiguities

when doing so. This issue and more examples are addressed in the Q&A and

exercises at the end of this section.

 One way to understand control flow is to

visualize it with a diagram called a flowchart,

like the one at left. Paths through the flow-

chart correspond to flow-of-control paths in

the program. In the early days of computing,

when programmers used low-level lan-

guages and difficult-to-understand flows of

control, flowcharts were an essential part of

programming. With modern languages, we

use flowcharts just to understand basic

building blocks like the if-else statement.

While loops. Many computations are inherently repetitive. The basic Java

construct for handling such computations has the following format:

while (<boolean expression>) <statement>

The while statement has the same form as the if statement (the only differ-

ence being the use of the keyword while instead of if), but the meaning is

quite different. It is an instruction to the computer to behave as follows: if the

expression is false, do nothing; if the expression is true, execute the state-

ment (just as with if) but then perform the same operation and continue

until the expression is not true any more. In other words, the while state-

ment is equivalent to a sequence of identical if statements:

if (<boolean expression>) <statement>

if (<boolean expression>) <statement>

if (<boolean expression>) <statement>

 . . .

x > y ?

Flow of control for the statement
if (x > y) max = x;
else max = y;

max = x; max = y;

noyes

Conditionals and Loops 47

At some point, the statement must change something (such as the value of

some variable in the expression) to make the expression false, and then the

sequence is broken.

There is a profound difference between programs with while state-

ments and programs without them, because while statements allow us to

specify a potentially unlimited number of different possible sequences of

statements to be executed in a program. In particular, the while statement

allows us to specify lengthy computations in short programs. This ability

opens the door to writing programs for all manner of tasks. But there is also

Program 2.2.2 Your first while loop

public class TenHellos
 {
 public static void main(String[] args)
 {
 System.out.println(“1st Hello”);
 System.out.println(“2nd Hello”);
 System.out.println(“3rd Hello”);
 int i = 4;
 while (i <= 10)
 {
 System.out.println(i + “th Hello”);
 i = i+1;
 }
 }

This program uses a while loop for

the simple repetitive task of printing

the ouput shown at right. After the

third line, the lines to be printed dif-

fer only in the value of the index

counting the line printed, so we define

a variable to contain that index and

increment it each time through the

loop to get the job done.

% javac TenHellos.java
% java TenHellos
1st Hello
2nd Hello
3rd Hello
4th Hello
5th Hello
6th Hello
7th Hello
8th Hello
9th Hello
10th Hello

48

An Introduction to Computer Science

a price to pay: as your programs become more sophisticated, they become

more difficult to understand.

For a simple example that uses a while statement, consider class

TenHellos in Program 2.2.2, which performs a simple task that could be

accomplished with a sequence of nearly identical System.out.println

statements. According to the template just given, the while loop is equivalent

to a sequence of copies of the statement

if (i <= 10) { System.out.println(i + “th Hello”); i = i+1; }

In this case, the statement is executed seven times and the sequence broken

when the value of i becomes 11. Using the while loop is barely worthwhile

Program 2.2.3 Computing powers of two

public class PowersOfTwo
 {
 public static void main(String[] args)
 {
 int i = 0;
 int N = 1;
 while (i <= 30)
 {
 System.out.println(i + “ “ + N);
 i = i + 1;
 N = 2 * N;
 }
 }
 }

This program prints a table of the

powers of two in the Java int data

type. Each time through the loop, the

value of i is incremented by 1 and the

value of N is doubled. To save space,

we show only the first four and the last

two lines of the table at right; the pro-

gram prints a 31-line table.

% javac PowersOfTwo.java
% java PowersOfTwo
0 1
1 2
2 4
3 8
...
29 536870912
30 1073741824

Conditionals and Loops 49

for this specific simple task, but you will very soon be addressing tasks where

you will need to use while loops to specify that statements be repeated far

too many times to contemplate doing so any other way.

Class PowersOfTwo in Program 2.2.3 uses a while loop to print out a

table of the powers of 2. This code is the prototype for many useful computa-

tions: by varying the computations that change the accumulated value and

the way that the loop control variable is incremented, we can print out tables

of a variety of functions (see Exercise 2.2.10 and Exercise 2.2.11).

It is worthwhile to examine the behavior of Program 2.2.3 carefully,

to learn how to think about the behavior of programs with loops. A tried-

and-true method for checking that a program is behaving as we expect is

known as tracing the program. For example, the following table is a trace of

the operation of Program 2.2.3. It shows the value of each of the variables

before each iteration of the loop (and, for emphasis, the value of the condi-

tional expression that controls the loop).

At first, tracing can seem tedious, but it is worthwhile because it clearly

exposes what a program is doing. This program is nearly a self-tracing pro-

gram, because it prints the values of its variables each time through the loop.1

i N i <= 30 i N i <= 30 i N i <= 30

0 1 true

1 2 true 11 2048 true 21 2097152 true

2 4 true 12 4096 true 22 4194304 true

3 8 true 13 8192 true 23 8388608 true

4 16 true 14 16384 true 24 16777216 true

5 32 true 15 32768 true 25 33554432 true

6 64 true 16 65536 true 26 67108864 true

7 128 true 17 131072 true 27 134217728 true

8 256 true 18 262144 true 28 268435456 true

9 512 true 19 524288 true 29 536870912 true

10 1024 true 20 1048576 true 30 1073741824 true

31 0 false

50

An Introduction to Computer Science

How did we know to stop the loop at 30 ? From Appendix X, we

know that the largest integer in Java’s int data type is . This value is

also available to our programs as Integer.MAX_VALUE, so we could change

the test to (N < Integer.MAX_VALUE/2) to be sure that we stop before print-

ing an incorrect value.

As a more complicated example, suppose

that we want to compute the largest power

of two not larger than a given integer N.

For example, if N is 13 we want the result 8,

if N is 1000, we want the result 512, if N is

64 we want the result 64, and so forth.

This computation is simple to perform

with a while loop, as follows:

 v = 1;

 while (v <= N/2) v = 2*v;

It takes some thought to convince oneself

that this simple piece of code produces the

desired result. You can do so in four steps:

first, v is always a power of 2; second, v is

never greater than N; third, v increases each time through the loop, so the loop

must eventually terminate; and fourth, after the loop terminates, 2*v is

greater than N. Reasoning of this sort is often important in understanding

how while loops work. Even though many of the loops you will write are

much simpler than this one, you should be sure that you understand each

loop that you write.

When you have a program that uses loops but does not print out

intermediate values, you will find yourself debugging it by adding statements

that do so, to produce a trace. In other words, when working with loops, it is

best to think about how the values of the variables change each time through

the loop. You may wish to reinforce this way of thinking in your first few pro-

1. There are many situations in computer science where it is useful to be familiar with powers

of two. You should know at least the first 10 values in this table and you should note that

is about 1 thousand, is about 1 million, and is about 1 billion.) 2
10

2
20

2
30

2
31

1–

v <= N/2 ?

Flow of control for the sequence
v = 1;

no

yes

while (v <= N/2) v = 2*v;

v = 1;

v = 2*v;

Conditionals and Loops 51

grams that use loops by printing out the values, as does Program 2.2.3. As you

gain more confidence, you will use traces that print out the values of variables

only at critical junctures during the execution of the program.

For loops. As you will see, the while loop suffices to allow us to write pro-

grams for all manner of applications. Before considering more examples, we

will look at alternate Java notations and constructs that allow us more flexi-

bility when writing programs with loops. These alternate ways of specifying

loops do not provide anything fundamentally different from the basic while

loop, but they allow us to write more compact and natural programs than if

we used only while statements.

For notation. Many loops follow the same basic scheme: initialize an index

variable to some value and then use a while loop to test an exit condition

involving the index variable, using the last statement in the while loop to

modify the index variable. Java’s for notation is a direct way to express such

loops. The statement

for (<init stmnt>; <boolean expression>; <incr stmnt>)
 { <body statements> }

is, with only a few exceptions, equivalent to the sequence

<init stmnt>;
while (<boolean expression>)
 { <body statements> <incr stmnt> }

There is usually no difference between a for loop and its corresponding

while loop—your Java compiler might even produce identical object code

for the two loops. When there is only one <body statement>, the braces are

not needed in the for statement (and a semicolon is needed to separate it

from the <incr stmnt> in the while statement).

The main purpose of the for loop is to support a typical program-

ming idiom: perform a computation for a sequence of values of a variable.

For example, the following two lines of code are equivalent to the final six

lines of code in TenHellos (Program 2.2.2):

 for (i = 4; i <= 10; i = i+1)
 System.out.println(i + "th Hello");

52

An Introduction to Computer Science

Typically, we work with an even more compact version of this code, using the

shorthand notation discussed next.

Idioms for single-operand operations. Modifying the value of a variable is

something that we do so often in programming that Java provides a variety of

different shorthand notations for the purpose. For example, the following

four statements all increment the value of i by 1 in Java:

i = i + 1; i++; ++i; i += 1;

You can also say i-- or --i or i -= 1 for i = i-1. Most programmers use

i++ or i-- in for loops, though any of the others would do. The ++ and --

constructs are normally used for integers, but the “operator-equals” construct

are useful operations for any arithmetic operator in any primitive numeric

type. For example, you can say N *= 2 or N += N instead of N = 2*N. All

of these idioms are for notational convenience, nothing more.

Statement sequences. The statements in the for loop header can be sequences

of statements, separated by commas. This notation allows us to initialize and

modify other variables besides the loop index in the header. For example, the

following two lines of code could replace the eight-line body of the main

method in PowersOfTwo (Program 2.2.3):

 for (i = 0, N = 1; i <= 30; i++, N *= 2)
 System.out.println(i + " " + N);

Null statements. Not all parts of a for loop need to be filled in with code. For

example, the following three lines of code are all equivalent (they all set v to

the largest power of 2 not larger than N):

 v = 1; while (v <= N/2) v *= 2;

 for (v = 1; v <= N/2;) v *= 2;

 for (v = 1; v <= N/2; v *= 2) ;

The first is the while statement that we considered as an example earlier in

this section; the second has a null increment statement; the third has a null

loop body.

Choosing among different formulations of the same computation

like these is a matter of each individual programmer’s taste, as when a writer

picks from among synonyms or chooses between using active and passive

Conditionals and Loops 53

voice when composing a sentence. Some programmers will passionately

defend one usage or another, just as some writers will passionately defend one

usage or another. You won’t find a good hard-and-fast rule on how to com-

pose a program that expresses a computation any more than you will find

good hard-and-fast rules on how to compose a paragraph that expresses a

thought. Your goal should be to find a style that suits you, gets the computa-

tion done, and can be appreciated by others.

This combination of shortcuts came into widespread use with the C

programming language in the 1970s and have become standard. They have

survived the test of time because they lead to compact, elegant and easily

understood programs. When you master the art of creating such programs,

you will be able to transfer that skill to programming in numerous modern

languages, not just Java.

Applications. The ability to program with loops immediately opens up the

world of computation to us. To emphasize this fact, we next consider a variety

of examples. These examples all involve working with the primitive types of

data (and Strings) that we considered in Section 2.1, but rest assured that

the same mechanisms serve us well for any computational application.

These sample programs are carefully crafted—by studying and

appreciating them, you will be in good position to write your own programs

containing loops, as requested in many of the exercises at the end of this sec-

tion.

54

An Introduction to Computer Science

Ruler subdivisions. Program 2.2.4 uses a for loop to compute the string of

ruler subdivision lengths that we considered in Program 2.1.1, but taking the

number of subdivisions from the command line. This program is an illustra-

tion of one of the essential charactersitics of loops—the program could

hardly be simpler, but it can produce a huge amount of output. You might

wish to trace this program as a warmup to understanding the ones that fol-

low. Its simplicity is deceptive.

The rest of the examples that we consider involve computing with

numbers, which has the advantage that the problems that arise are natural if

not familiar ones. Several of our examples are tied to classical problems faced

by mathematicians and scientists as they have learned and applied properties

of numbers through the centuries. While computers have existed for only 50

years or so, many of the fundamental computational methods that we use are

based on a rich mathematical tradition tracing back to antiquity.

Program 2.2.4 Ruler subdivisions

public class RulerN
 {
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 String ruler = “ “;
 for (int i = 1; i <= N; i++)
 ruler = ruler + i + ruler;
 System.out.println(ruler);
 }
 }

This program uses a for loop to sim-

plify the iterative computation in

Program 2.1.1. Note that Java auto-

matically converts i to a string each

time through the loop.

% javac RulerN.java
% java RulerN 2
 1 2 1
% java RulerN 4
 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

Conditionals and Loops 55

Finite sum. The computational paradigm used by Program 2.2.3 is one that

you will use frequently. It uses two variables—one as an index that controls a

loop and the other to accumulate a computational result.

 Class Harmonic in Program 2.2.5 uses

the same paradigm to evaluate the sum

These numbers, which are known as the

Harmonic numbers, arise frequently in

mathematical analysis. Harmonic num-

bers are the discrete analog of the logarithm: they approximate the area under

the curve . This approximation is a special case of quadrature, or

numerical integration, which we will consider in Chapter 9.

You can easily use Program 2.2.5 as a model for computing the values

of other sums (see Exercise 2.2.16).

Program 2.2.5 Computing the Harmonic numbers

public class Harmonic
 {
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 double sum = 0.0;
 for (int i = 1; i <= N; i++)
 sum += 1.0/i;
 System.out.println(sum);
 }
 }

This program computes the value of

the Nth Harmonic number. The value

is known from mathematical analysis

to be about ln(N) + .57721... for large

N. As a check, note that ln(10000) =

9.21034...

% javac Harmonic.java
% java Harmonic 2
1.5
% java Harmonic 10
2.9289682539682538
% java Harmonic 10000
9.787606036044348

1

1/2

1/3

1/4
1/5

HN 1
1

2

1

3

1

4
--- …

1

N
----+ + + + +=

y 1 x=

56

An Introduction to Computer Science

Computing the square root. How are functions in Java’s Math library such as

Math.sqrt implemented? Class Sqrt in Program 2.2.6 illustrates one tech-

nique. To compute the square root function, it uses an iterative computation

that is derived from a general computational technique that was developed in

the 17th century by Isaac Newton and Joseph Raphson and is widely known

as Newton’s method.

Under generous conditions on a given func-

tion, Newton’s method is an effective way to

find roots (values of x for which the function

is 0): Start with an initial estimate . Given

an estimate , compute a new estimate by

drawing a line tangent to the curve

at the point and set to the x-

coordinate of the point where that line hits

the x axis. As we iterate this process, we get

closer to the root.

Program 2.2.6 Newton’s method for computing the square root

public class Sqrt
 {
 public static void main(String[] args)
 {
 double c = Double.parseDouble(args[0]);
 double t = c;
 while (t - c/t > .000000000000001)
 t = (c/t + t)/2.0;
 System.out.println(t);
 }
 }

This program computes the square

root of its command-line argument,

using Newton’s method (see text). It

stops when it has an answer accurate

to within 15 decimal places.

% javac Sqrt.java
% java Sqrt 2
1.414213562373095
java Sqrt 1048575
1023.9995117186336

y = f(x)

titi+1ti+2

root

Newton’s method

t0

ti

y f x()=

ti f ti(),() ti 1+

Conditionals and Loops 57

Computing the square root of a positive number c is equivalent to

finding the positive root of the function . It is a simple exercise

in analytic geometry (see Exercise 2.2.17) to show that Newton’s method for

this problem amounts to the process implemented in Program 2.2.6: Start

with an estimate t. If t is equal to c/t, then t is equal to the square root of c, so

the computation is complete. If not, refine the estimate by replacing t with the

average of t and c/t :

With Newton’s method, we get the value of accurate to 15 places in just 5

iterations of the loop.

Newton’s method is important in scientific computing because the

same iterative approach is effective for finding roots of a broad class of func-

tions, including many for which analytic solutions are not known (so the Java

Math library would be no help). We cover Newton’s method more thoroughly

and consider applications in Section 9.1.

 With computers and calculators, we take for granted that we can find

whatever values we need of mathematical functions; before computers, scien-

tists and engineers had to use tables or computed values by hand. Not sur-

prisingly, computational techniques that were developed to enable such

calculations needed to be very efficient, so it is not suprising that many of

those same techniques are effective when we use computers. Newton’s

method is a classic example of this phenomenon. Another useful approach

for evaluating mathematical functions is to use Taylor series expansions (see

Exercise 2.2.36 and Exercise 2.2.37).

N t c/t

1 2.0000000000000000 1.0

2 1.5000000000000000 1.3333333333333333

3 1.4166666666666665 1.4117647058823530

4 1.4142156862745097 1.4142114384748700

5 1.4142135623746899 1.4142135623715002

6 1.4142135623730950 1.4142135623730951

f x() x=
2

c–

2

58

An Introduction to Computer Science

Number conversion. Class Binary in Program 2.2.7 prints the binary (base 2)

representation of the decimal number typed as the command-line argument.

It is based on decomposing the number into a sum of powers of two. For

example, the binary representation of 106 is 1101010, which is the same as

saying that 106 = 64+32+8+2. In binary, this equation is more transparent:

 1000000

+ 100000

+ 1000

+ 10

= 1101010

To compute the binary representation of N, we consider the powers of 2 less

than or equal to N in decreasing order to determine which belong in the

binary decomposition (and therefore correspond to a 1 bit in the binary rep-

resentation). A trace (of the second for loop in the program for the case

Program 2.2.7 Converting to binary representation

public class Binary
 {
 public static void main(String[] args)
 {
 int v, N = Integer.parseInt(args[0]);
 for (v = 1; v <= N/2; v *= 2) ;
 for (; v > 0; v /= 2)
 if (N < v) { System.out.print(0); }
 else { System.out.print(1); N -= v; }
 System.out.println();
 }
 }

This program prints the binary repre-

sentation of the command-line argu-

ment, by casting out powers of 2 in

decreasing order (see text). Note that

the first for loop has a null loop body

and the second for loop has a null

initialization statement.

% javac Binary.java
% java Binary 5
101
% java Binary 106
11001010
% java Binary 100000000
101111101011110000100000000

Conditionals and Loops 59

when N is 106) will be instrumental in helping you to understand how the

program does its job.

Read from top to bottom inthe rightmost column, the output is 1101010, the

binary representation of 106.

Converting data from one representation to another is a frequent

theme in writing computer programs. Thinking about conversion empha-

sizes the distinction between an abstraction (an integer like the number of

hours in a day) and a representation of that abstraction (24 or 11000). The

irony in this case is that the computer’s representation of an integer is actually

based on its binary representation, as we shall see in Chapter 5.

Simulation. Our next example is different

in character from the ones we have been

considering, but it is representative of a

common situation where we use comput-

ers to simulate what might happen in the

real world, so that we can make informed

decisions in all kinds of complicated situ-

ations. The specific problem that we con-

sider now is from a thoroughly-studied

class of problems known as gambler’s ruin

problems. Suppose that a gambler makes

N binary
representation

v binary
representation

N < v output

106 1101010 64 1000000 false 1

42 101010 32 100000 false 1

10 01010 16 10000 true 0

10 1010 8 1000 false 1

2 010 4 100 true 0

2 10 2 10 false 1

0 0 1 1 true 0

0 0

stake

Gambler simulation sequences

 goal

 0

stake

 goal

 0

 win

 lose

60

An Introduction to Computer Science

a series of fair $1 bets, starting with some given initial stake. The gambler

always goes broke, eventually, but when we set other limits on the game, var-

ious questions arise. For example, suppose that the gambler decides ahead of

time that she will walk away after reaching a certain goal. What are the

chances that she will win, and how many bets might she have to make before

winning or losing the game?

Class Gambler in Program 2.2.8 is a simulation that can help answer

these questions. It does a sequence of trials, using Math.random to simulate

the sequence of bets, continuing until the gambler is broke or the goal

Program 2.2.8 Gambler simulation

public class Gambler
 {
 public static void main(String[] args)
 {
 int stake = Integer.parseInt(args[0]);
 int goal = Integer.parseInt(args[1]);
 int N = Integer.parseInt(args[2]);
 int bets = 0, wins = 0;
 for (int i = 0; i < N; i++)
 { int t;
 for (t = stake; t > 0 && t < goal; bets++)
 if (Math.random() > 0.5)
 t++;
 else t--;
 if (t == goal) wins++;
 }
 System.out.println(100*wins/N + “% wins”);
 System.out.println(“Avg # bets: “ + bets/N);
 }
 }

The inner for loop in this program

simulates a gambler with $stake

who makes a series of $1 bets, con-

tinuing until going broke or reaching

$goal.

% javac Gambler.java
% java Gambler 10 20 1000
50% wins
Avg # bets: 100
% java Gambler 50 250 100
19% wins
Avg # bets: 11050

Conditionals and Loops 61

reached, and keeping track of the number of wins and the number of bets.

After running the experiment for the specified number of trials, it averages

and prints out the results. You might wish to run this program for various

values of the command-line arguments, not necessarily just to plan your next

trip to the casino, but to help you think about the following questions: Is the

simulation an accurate reflection of what would happen in real life? How

many trials are needed to get an accurate answer? What are the computational

limits on performing such a simulation? Simulations are widely used in appli-

cations in economics, science, and engineeering, and questions of this sort

are important in any simulation.

In the case of Program 2.2.8, we are merely verifying classical results

from probablity theory, which say the the probability of success is the ratio of

the stake to the goal and that the expected number of bets is the product of

the stake and the desired gain (the difference between the goal and the stake).

For example, if you want to go to Monte Carlo to try to turn $500 into $2500,

you have a reasonable (20%) chance of success, but you should expect to

make a million $1 bets!

Simulation and analysis go hand-in-hand, each validating the other.

In practice, the value of simulation is that it can suggest answers to questions

that might be too difficult to resolve with analysis. For example, suppose that

our gambler, recognizing that she will never have the time to make a million

bets, decides ahead of time to set an upper limit on the number of bets. How

much money can she expect to take home in that case? You can address this

question with an easy change to Program 2.2.8 (see Exercise 2.2.25), but

addressing it with analysis is likely to be beyond your reach.

62

An Introduction to Computer Science

Factoring. Class Factors in Program 2.2.9 computes the prime factorization

of any given positive integer. In contrast to many of the other programs that

we have seen (which we could do in a few minutes with a calculator or even a

pencil and paper), this computation would not be feasible without a com-

puter. How would you go about trying to find the factors of a number like

287994837222311? Even with a calculator, you might find the factor 17

quickly, but it would take you quite a while to find 1739347.

While the program is compact and straighforward, it takes some

thought to be convinced even that this program produces the desired result

for any given integer, so we turn to that task next.

As usual, we begin with a trace. The following table shows the values

of the variables just before each iteration of the outer for loop when

Program 2.2.9 is invoked with the command java Factors 3757208. When

i is 2, the inner for loop is iterated three times to remove the three factors of

2; when i is 3, 4, 5, and 6, the inner for loop is iterated zero times since none

of those numbers divide 46951; and so forth.

Program 2.2.9 Factoring integers

public class Factors
 {
 public static void main(String[] args)
 {
 long N = Long.parseLong(args[0]);
 for (long i = 2; i <= N/i; i++)
 while (N % i == 0)
 { N /= i; System.out.print(i + “ “); }
 if (N > 1) System.out.println(N);
 }
 }

This program prints the prime factor-

ization of any positive integer in Java’s

long data type. The code is simple,

but it takes some thought to convince

oneself that it is correct (see text).

% javac Factors.java
% java Factors 3757208
2 2 2 7 13 13 397
% java Factors 287994837222311
17 1739347 9739789

Conditionals and Loops 63

This trace clearly exposes the basic operation of the program. To convince

ourselves that it is correct, we reason at a higher level of abstraction about

what we expect each of the loops to do. The while loop clearly prints and

removes from N all factors of i—the key to understanding the program is to

see that the following fact holds at the beginning of each iteration of the for

loop: N has no nontrivial factors less than i. Thus, if i is not prime, it will not

divide N; if i is prime, the while loop will do its job. Moreover, once we know

that N has no factors less than or equal to i, we also know that it has no factors

greater than N/i, so we need look no further when i is greater than N/i.

In a more naive implementation, we might simply have used the con-

dition (i < N) to terminate the for loop. Even given the blinding speed of

modern computers, such a decision would have a dramatic effect on the size

of the numbers that we could factor. Exercise 2.2.27 encourages you to exper-

iment with the program to learn the effectiveness of this simple change. On

a computer that can do billions of operations per second we could do num-

bers on the order of in a few seconds; with the (i <= N/i) test we can do

numbers on the order of in a comparable amount of time. Loops give us

the ability to solve difficult problems, but they also give us the ability to con-

struct simple programs that run slowly, so we must always be congizant of

performance.

In modern applications such as cryptography (see Chapter 10), there

are actually situations where we wish to factor truly huge numbers (with, say,

i N output i N output i N output

2 3757208 2 2 9 67093 16 397

3 469651 10 67093 17 397

4 469651 11 67093 18 397

5 469651 12 67093 19 397

6 469651 13 67093 13 13 20 397

7 469651 7 14 397 397

8 67093 15 397

10
9

10
18

64

An Introduction to Computer Science

hundreds or thousands of digits). Such a computation is difficult enough

even with the use of a computer—we will return to this problem in Chapter 8.

Other conditional and loop constructs. To be complete, we consider here

three more Java-language constructs that relate to loops. You need not be

thinking about using these constructs for every program that you write,

because they used much less frequently than the if, while and for state-

ments. But it is worthwhile to be aware of them, because it is often the case

that using one of them can be helpful when you get stuck or find yourself with

overly complicated code trying to compose a conditional or a loop.

Do-while notation. Another way to write a loop is to use the statement

do <statement> while (<condition>);

The meaning of this statement is the same as

while (<condition) <statement>

except that the first test of the condition is omitted. If the condition initially

holds, then there is no difference.

For example, the following code sets x and y
such that (x, y) is randomly distributed in the

unit disk.

 do

 {

 x = 2.0*Math.random() - 1.0;

 y = 2.0*Math.random() - 1.0;

 }

 while (Math.sqrt(x*x + y*y) > 1.0);

With Math.Random, we get points that are ran-

domly distributed in the unit square—we just generate points until finding

one in the unit disk. We always want to generate at least one point, so a do-

while loop is called for. Since the area of the disk is and the area of the

square is 4, the expected number of times the loop is iterated is just

(about 1.27). There are a few other similar examples that we will point out

when we encounter them later in the book, but you do not need to worry

about do-while loops now. Most programmers rarely use them.

 (1,1)

x

y

in

out

!

4 !

Conditionals and Loops 65

Break statement. In some situations, we want to immediately exit a loop,

without letting it run to completion. Java provides the break statement for

this purpose. For example, the following code is an effective way to test

whether a given integer N is prime:

int i;

for (i = 2; i <= N/i; i++)

 if (N % i == 0) break;

if (i > N/i) System.out.println(“N is prime”);

There are two different ways to leave this loop: either the break statement was

executed (because i divides N, so N is not prime) or the for loop condition

was not satisfied (so no i with i <= N/i was found that divides N, which

implies that N is prime). Note that we have to declare i outside the for loop

instead of in the initialization statement.

Continue statement. Java also provides a way to skip to the next iteration of a

loop: the continue statement. When a continue is executed within a loop

body, the flow of control immediately transfers to the next iteration of the

loop. Usually, it is easy to achieve the same effect with an if statement inside

the loop. The continue statement provides the exception to the rule that

while and for statements are equivalent.

Switch statement. The if and if-else statements allow one or two alterna-

tives in directing the flow of control. Sometimes, a computation naturally

suggests more than two alternatives. We can use a sequence or a chain of if-

else statements in such situations, but the Java switch statement provides a

direct solution. We omit a formal description and move right to a typical

example: Rather than printing an int variable day in a program that works

with days of the weeks (such as a solution to Exercise 2.1.17) it would be pref-

erable to use a switch statement, as follows:

switch (day)

 {

 case 0: System.out.println(“Sunday”); break;

 case 1: System.out.println(“Monday”); break;

 case 2: System.out.println(“Tuesday”); break;

 case 3: System.out.println(“Wednesday”); break;

 case 4: System.out.println(“Thursday”); break;

66

An Introduction to Computer Science

 case 5: System.out.println(“Friday”); break;

 case 6: System.out.println(“Saturday”); break;

 }

We leave details beyond this example to Appendix X. When you have a pro-

gam that seems to have a long and regular sequence of if statements, you

might consider consulting Appendix X and using a switch statement. We will

also consider another option in Section 2.3.

Generally, you do not need to worry about using the do-while,

break, continue, or switch statements until you are comfortable using if,

while, and for. Many programmers do not use them at all.

Infinite loops. Before you write programs that use loops, you need to think

about the following issue: What if the condition that is supposed to end a

while loop is never satisfied? One of two bad things could happen, both of

which you need to learn to cope with.

First, suppose that such a loop calls System.out.println. For

example, if the condition in TenHellos were (i > 3) instead of (i <= 10),

it would always be true. What happens? Nowadays, we use “print” as an

abstraction to mean “display in a terminal window” and the result of

attempting to display an unlimited number of lines in a terminal window is

dependent on operating-system conventions. If your system is set up to have

“print” mean “print characters on a piece of paper” you might run out of

paper or have to unplug the printer. In a terminal window, you need a “stop

printing” operation that has a similar effect. Before running programs with

loops on your own, you should find out what you should do to “pull the plug”

on an infinite loop of System.out.println calls (see the booksite for

instructions on several widely-used systems) and then test out the strategy by

making the change to TenHellos indicated above and trying to stop it.

Second, nothing might happen. If your program has an infinite loop

that does not consume any resources, it will happily spin through the loop

and you will see no results at all. When you find yourself in such a situation,

you can inspect the loops to make sure that the loop exit condition always

happens, but the problem may not be easy to indentify. One way to locate

such a bug is to insert calls to System.out.println to produce a trace. If

Conditionals and Loops 67

these calls fall within an infinite loop, this strategy reduces the problem to the

case discussed in the previous paragraph!

You might not know (or it might not matter) whether a loop is infi-

nite or just very long. For example, if you invoke Program 2.2.8 with large

arguments such as java Gambler 100000 200000 you may not want to wait

for the answer. You will learn to be aware of and to estimate the running time

of our programs.

Why not have the Java compiler detect infinite loops and warn us

about them? You might be surprised to know that it is not possible to do so, in

general. This fact is one of the fundamental results of theoretical computer

science, which we will address in Chapter 8.

Summary. For reference, the following table lists and characterizes the

programs that we have considered in this section. They are representative of

the kinds of tasks we can address with short programs comprised of if,

while and for statements processing simple types of data. You will find sev-

eral more examples in the exercises. These types of computations are an

appropriate way to become familar with basic Java flow-of-control constructs

such as the if, while, and for statements. The time that you spend now

working with as many such programs as you can will certainly pay off for you

in the future.

TenHellos your first loop

PowersOfTwo compute and print a table of values

RulerN short program produces long output string

Harmonic compute finite sum

Newton classic iterative algorithm

Binary basic number conversion

Gambler simulation experiment with nested for loops

Factor while loop within a for loop

68

An Introduction to Computer Science

To learn how to use conditionals and loops, you must practice writ-

ing and debugging programs with if, while, and for statements. The exer-

cises at the end of this section provide many opportunities for you to begin

this process. Some involve modifying and extending the programs in this sec-

tion; others present new challenges.

For each exercise, you will write a Java program, then run and test it.

All programmers know that it is unusual to have a program work as planned

the first time it is run, so you will want to have an understanding of your pro-

gram and an expectation of what it should do, step by step. At first, use

explicit traces to check your understanding and expectation. As you gain

experience, you will find yourself thinking in terms of what a trace might pro-

duce as you compose your loops. Ask yourself the following sorts of ques-

tions: What will be the values of the variables after the loop interates the first

time? The second time? The final time? Is there any way this program could

get stuck in an infinite loop?

Loops and conditionals are a giant step in our ability to compute: if,

while and for statements take us from simple straight-line programs to arbi-

trarily complicated flow of control. In the next several chapters, we will take

more giant steps: to allow us to process large amounts of input data and to

allow us to define and process other types of data than simple numeric types.

The if, while and for statements of this section will play an essential role in the

programs that we consider as we take these steps forward.

Q&A

Q What is the difference between = and ==?

A That was our first question after Section 2.1, but we repeat it here to

remind you to be sure not to use = when you mean == in a conditional
expression. The expression (x = y) assigns the value of y to x and also is a
conditional expression with value true, so if (x = y) <statement> does
not test whether x is equal to y but rather unconditionally does the
assignment and executes the statement. In lower-level programming lan-
guages, this difference can wreak havoc in a program and be difficult to
detect, but Java’s type safety usually will come to the rescue. For example, if

Conditionals and Loops 69

we made the mistake of typing (t = goal) instead of (t == goal) in
Program 2.2.8, the compiler would find the bug for us:

javac Gambler.java

Gambler.java:41: incompatible types

found : int

required: boolean

if (t = goal) wins++;

 ^

1 error

Q So using == instead of = is something I need to pay attention to when

writing loops and conditionals. Is there something else in particular that I
should watch out for?

A Another very common mistake is to forget the braces in a loop or

conditional with a two-statement body. For example, consider this version of
the code in Gambler

for (int i = 0; i < trials; i++)

 for (t = stake; t > 0 && t < goal; bets++)

 if (Math.random() > 0.5)

 t++;

 else t--;

 if (t == goal) wins++;

The code looks good, but is dsyfunctional because the second if is outside

both for loops and gets executed just once.

Q Anything else?

A The third classic pitfall is ambiguity in nested if statements. If you write

if <expr1> if <expr2> <stmntA> else <stmntB>

you could mean either that <stmntB> is to be executed if <expr1> is false:

if <expr1> { if <expr2> <stmntA> } else <stmntB>

or that <stmntB> is to be executed if <expr1> is true and <expr2> is false:

if <expr1> { if <expr2> <stmntA> else <stmntB> }

70

An Introduction to Computer Science

When we write the statements on one line as above, the ambiguity is obvious;

real code with indenting is susceptible to insidious bugs like the one

described in the last question. The rule in Java is that else always refers to the

most recent if that has no else (the second meaning above). To avoid this

trap, it is good programming practice to use explicit braces in such situations.

Q Is there some program for which I must use a for loop but not a while

loop, or vice versa?

A No.

Q What are the rules on where we declare the loop-control variables?

A Opinions differ. In older programming languages, it was required that all

variables be declared at the beginning of a block, so many programmers are
in this habit and there is a lot of code out there that follows this convention.
But it makes a lot of sense to declare variables where they are first used,
particularly in for loops, when it is normally the case that the variable is not
needed outside the loop. But is also not uncommon to need to test (and
therefore declare) the loop-control variable outside the loop, as in
Program 2.2.8.

Q What is the difference between ++i and i++?

A As statements, no difference. In expressions, both increment i but ++i

has the value after the increment and i++ the value before the increment. It is
safe for you not worry much about this distinction and just use i++ for now.
When we use ++i in this book, we will call attention to it and say why.

Exercises

2.2.1 Write a program that reads in three integer parameters and prints
equal if all three are equal, and not equal otherwise.

2.2.2 What is wrong with each of the following statements?

a if (a > b) then c = 0;

b if a > b { c = 0; }

Conditionals and Loops 71

c if (a > b) c = 0;

d if (a > b) c = 0 else b = 0;

2.2.3 Write a more general and more robust version of Quadratic
(Program 2.1.3) that prints the roots of the polynomial and
also prints an appropriate message if the discriminant is negative, and
behaves appropriately (avoiding division by zero) if a and/or b is zero.

2.2.4 Extend your solution to Exercise 2.1.16 to convert (x, y) to polar
coordinates for any values of x and y.

2.2.5 Suppose that i and j are both of type int. What is the value of j
after each of the following statements is executed?

a for (i = 0, j = 0; i < 10; i++) j += i;

b for (i = 0, j = 1; i < 10; i++) j += j;

c for (j = 0; j < 10; j++) j += j;

d for (i = 0, j = 0; i < 10; i++) j += j++;

2.2.6 Rewrite TenHellos to make a program Hellos that takes the
number of lines to print as a command-line argument. You may assume
that the argument is less than 1000. Hint: Use i % 10 and i % 100 to
determine when to use st, nd, rd, or th for printing the ith Hello.

2.2.7 Write a program that, using one for loop and one if statement,
prints the integers from 1000 to 2000 with five integers per line. Hint: Use
the % operation.

2.2.8 Write a program that takes an integer N as a command-line
argument and uses Math.random to print N uniform random values
between 0 and 1 and then prints their average value (see Exercise 2.1.13).

2.2.9 Describe what happens when you invoke Program 2.2.4 with an
argument that is too large, such as java RulerN 100.

2.2.10 Write a program PowersOfK that takes an integer k as command-
line argument and prints all the positive powers of k in the Java long data
type. Note: Recall that the constant Long.MAX_VALUE is the value of the
largest integer in long.

2.2.11 Write a program FunctionGrowth that prints a table of the values
of , , , , , and , for N = 16, 32, 64, ... , 2048 . Use
tabs (\t characters) to line up columns.

ax
2

bx c+ +

Nlog N N Nlog N
2

N
3

2
N

72

An Introduction to Computer Science

2.2.12 What does the following program print ?

int f = 0, g = 1;

for (int i = 0; i <= 15; i++)

 {

 System.out.println(f);

 f = f + g;

 g = f - g;

 }

Solution. Even an expert programmer will tell you that the only way to
understand a program like this is to trace it. When you do, you will find
that it prints the values 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 134, 233, 377,
and 610 . These numbers are first sixteen of the famous Fibonacci numbers,
which are defined by the following formulas: , , and

for . The Fibonacci numbers arise in a surpris-
ing variety of contexts, they have been studied for centuries, and many of
their properties are well-known. For example, the ratio of successive
numbers approaches the golden ratio (about 1.618) as .

2.2.13 Write a version of the program in the previous exercise that prints
the ratio of successive Fibonacci numbers, for all those in Java’s int data
type.

2.2.14 Expand your solution to Exercise 2.1.15 to print a table giving the
total amount paid and the remaining principal after each monthly
payment.

2.2.15 What is the value of M after executing the following code ?

int N = 123456789;

int M = 0;

while (N != 0)

 {

 M = (10 * M) + (N % 10);

 N = N / 10;

 }

2.2.16 The sum

F0 0= F1 1=

FN FN 1– FN 2–+= N 1>

$ N %&

1

1
2

1

2
2

1

3
2

1

4
2

----- …
1

N
2

------+ + + + +

Conditionals and Loops 73

does converge to a constant as . (Indeed, the constant is , so

this formula can be used to compute the value of .) Which of the follow-

ing for loops computes this constant? Assume that N is an int initialized

to 1000000 and sum is a double initialized to 0.

a for (int i = 1; i <= N; i++)

 sum += 1 / (i * i);

b for (int i = 1; i <= N; i++)
 sum += 1.0 / i * i;

c for (int i = 1; i <= N; i++)
 sum += 1.0 / (i * i);

d for (int i = 1; i <= N; i++)
 sum += 1 / (1.0 * i * i);

2.2.17 Using the fact that the slope of the tangent to a (differentiable)
function at is , find the equation of the tangent line and
use that equation to find the point where the tangent line intersects the x
axis to show that you can use Newton’s method to find a root of any
function as follows: at each iteration, replace the estimate t by

. Then use the fact that for to
show that Program 2.2.6 implements Newton’s method for finding the
square root of c.

2.2.18 Use the general formula for Newton’s method in Exercise 2.2.17 to
develop a program Root that takes an integer k its second command-line
argument and prints the kth root of the first command-line argument.

2.2.19 Suppose that x and t are variables of type double and N is a
variable of type int. Write a code fragment to set t to .

Solution. A direct solution is to use one loop for the numerator and
another loop for the denominator, then divide the results:

double num, dem;

for (i = 1, num = 1.0; i <= N; i++) num *= x;

for (i = 1, den = 1.0; i <= N; i++) den *= i;

t = num/den;

A better approach is to use just a single for loop:

for (i = 1, t = 1.0; i <= N; i++) t *= x/i;

N %& !
2

6

!

f x() x t= f ' t()

f x()

t f t()– f ' t() f ' t() 2t= f x() x
2

c–=

x
N

N!

74

An Introduction to Computer Science

Besides being more compact and elegant, the latter solution is preferable

because it avoid inaccuracies caused by computing with huge numbers.

For example, the two-loop approach breaks down for values like

and because 100! is too large to represent as a double.

2.2.20 Modify Binary to get a program Kary that takes a second
command-line argument k and to convert the first argument to base k.
Assume that the first argument is an integer in Java’s long data type and
that the second is an integer between 2 and 20. For bases greater than 10,
use the letters A through K to represent the 11th through 20th digits,
respectively.

2.2.21 Write a code fragment that puts the binary representation of an
int N into a String s.

Solution. Java has a built-in method Integer.toBinaryString(N) for
this job, but the point of the exercise is to see how such a method might be
implemented. Working from Program 2.2.7, we get the solution

for (v = 1; v <= N/2; v *= 2) ;

for (s = ""; v > 0; v /= 2)

 if (N < v) { s += 0; }

 else { s += 1; N -= v; }

A simpler option is to work from right to left:

for (s = ""; N > 0; N /= 2)

 s = (N % 2) + s;

Both of these methods are worthy of study.

2.2.22 Write a version of Gambler that uses while loops instead of for
loops.

2.2.23 Write a program GamblerPlot that traces a gambler’s ruin
simulation by printing a line after each bet that has one asterisk
corresponding to each dollar held by the gambler.

2.2.24 Modify Gambler to take an extra command-line parameter that
specifies the (fixed) probability that the gamber wins each bet. Use your
program to try to learn how this probability affects the chance of winning
and the expected number of bets.

x 10=

N 100=

Conditionals and Loops 75

2.2.25 Modify Gambler to take an extra command-line parameter that
specifies the number of bets the gambler is willing to make, so that there
are three possible ways for the game to end: the gambler wins, loses, or
runs out of time. Add to the output to give the expected amount of money
the gambler will have when the game ends. Extra credit: Use your program
to plan your next trip to Monte Carlo.

2.2.26 Modify Factors to print just one copy each of the prime divisors.

2.2.27 Run quick experiments to determine the impact of using the
termination condition (i <= N/i) instead of (i < N) in Factor in
Program 2.2.9. For each method, find the largest M such that when you
type in an M digit number the program is sure to finish within 10 seconds.

2.2.28 Write a program GCD that finds the greatest common divisor (gcd)
of two integers using Euclid’s algorithm, which is an iterative computation
based on the following observation: If x is greater than y, then if y divides
x, the gcd of x and y is y; otherwise the gcd of x and y is the same as the
gcd of x % y and y.

2.2.29 Write a program Checkerboard that takes one command line
argument N and uses a loop within a loop to print out a two-dimensional
N-by-N checkboard pattern with alternating spaces and asterisks.

2.2.30 Write a program Divisors that takes one command-line parame-
ter N and prints out an N by N table such that there is a * in row i and
column j if the gcd of i and j is 1 (i and j are relatively prime), and a
space otherwise (see Exercise 2.2.28).

Creative Exercises

2.2.31 Ramanujan's taxi. S. Ramanujan was an Indian mathematician
who became famous for his intuition for numbers. When the English
mathematician G. H. Hardy came to visit him in the hospital one day,
Hardy remarked that the number of his taxi was 1729, a rather dull
number. To which Ramanujan replied, “No, Hardy! No, Hardy! It is a very
interesting number. It is the smallest number expressible as the sum of two
cubes in two different ways.” Verify this claim by writing a program
Ramanujan.java that takes a command line argument N and prints out all
integers less than or equal to N that can be expressed as the sum of two

76

An Introduction to Computer Science

cubes in two different ways—find distinct positive integers a, b, c, and d
such that . Use four nested for loops. Note: We will
study faster ways to solve this problem in Chapter 4.

2.2.32 Checksum. The International Standard Book Number (ISBN) is a
10-digit code that uniquely specifies a book. The rightmost digit is a
checksum digit which can be uniquely determined from the other 9 digits
from the condition that must be a multiple of 11
(here denotes the ith digit from the right). The checksum digit can
be any value from 0 to 10: the ISBN convention is to use the value X to
denote 10. Example: the checksum digit corresponding to 020131452 is 5
since 5 is the only value of x between 0 and 10 for which

 is a multiple of
11. Write a program that takes a 9-digit integer as a command line
argument, computes the checksum, and prints out the the ISBN number.

2.2.33 Calendar. Write a program Calendar that takes two command-line
arguments M and Y and prints out the monthly calendar for the Mth month
of year Y. For example, your output for Calendar 2 2009 should be

 February 2009

 S M Tu W Th F S

 1 2 3 4 5 6 7

 8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

Hint: See Program 2.1.4 and Exercise 2.1.17.

2.2.34 Counting primes. Write a program PrimeCounter that takes one
command line argument N and finds the number of primes less than N. Use
it to print out the number of primes less than 10 million. Note: if you are
not careful to make your program efficient, it may not finish in a
reasonable amount of time!

2.2.35 Dragon curves. Write a program that takes an integer N as
command-line parameter and prints the instructions for drawing a dragon
curve of order N (see Exercise 2.1.18).

a
3

b
3

+ c
3

d
3

+=

d1 2d2 3d3 … 10d10+ + + +

di d1

1 x(2 2(3 5(4 4(5 1(6 3(7 1(8 0(9 2(10 0(+ + + + + + + + +

Conditionals and Loops 77

2.2.36 Exponential function. Assume that x and sum are variables of type
double. Write a code fragment to use the Taylor series expansion to set the
value of sum to

Solution. A direct solution is to use a for loop within a for loop, based
on the solution to Exercise 2.2.19:

double term = 1.0, sum = 1.0;

for (N = 1; sum != sum + term; N++)

 { term = 1.0;

 for (i = 1; i <= N; i++) term *= x/i;

 sum += term;

 }

The number of times the loop iterates depends on the relative values of the

next term and the accumulated sum. Once the value of the sum stops

changing, we leave the loop. (This strategy is more efficient than using the

termination condition (term > 0) because it avoids a significant number

of iterations that do not change the value of the sum.) This code is effec-

tive, but it is inefficient, because the inner for loop recomputes all the val-

ues it computed on the previous iteration of the outer for loop. Instead, we

can make use of the term that was added in on the previ-

ous loop iteration and solve the problem with a single for loop:

double term = 1.0; sum = 1.0;

for (int N = 1, sum != sum + term; N++)

 { term *= x/N; sum += term; }

We always seek improvements of this sort in our programs.

2.2.37 Trigonometric functions. Write two programs Sin and Cos that
compute and using their Taylor series expansions

 and .

2.2.38 Experimental analysis. Run experiments to determine the relative
costs of Math.Exp and the following three methods from Exercise 2.2.35
for the problem of computing : , the direct method with nested for
loops, the improved method with a single for loop, and the latter with the
termination condition (term > 0). For each method, use trial-and-error

e
x

1 x
x

2

2!

x
3

3!

x
4

4!
----- …+ + + + +=

x
N 1–

N 1–()!

xsin xcos

xsin x– x
3

3! x
5

5! …+–+= xcos 1 x+
2

2! x
4

4! …+ +=

e
x

78

An Introduction to Computer Science

with a command-line argument to determine how many times your
computer can perform the computation in 10 seconds.

2.2.39 2D random walk. A two-dimensional random walk simulates the
behavior of a particle moving in a grid of points. At each step, the random
walker moves north, south, east, or west with probability , indepen-
dent of previous moves. Write a class RandomWalker that takes a command
line parameter N and estimates how long it will take a random walker to
hit the boundary of a 2N by 2N square centered at the starting point.

2.2.40 Game simulation. In the 1970s game show Let’s Make a Deal, a
contestant is presented with three doors. Behind one of them is a valuable
prize, behind the other two are gag gifts. After the contestant chooses a
door, the host opens one of the other two doors (never revealing the prize,
of course). The contestant is then given the opportunity to switch to the
other unopened door. Should the contestant do so? Intuitively, it might
seem that the contestant’s initial choice door and the other unnopened
door are equally likely to contain the prize, so there would be no incentive
to switch. Write a program MonteHall to test this intuition by simulation.
Your program should take a command-line parameter N, play the game N
times using each of the two strategies (switch or do not switch) and print
the chance of success for each of the two strategies.

2.2.41 Chaos. Write a program to study the following simple model for
population growth, which might be applied to study fish in a pond,
bacteria in a test tube, or any of a host of similar situations. We suppose
that the population ranges from 0 (extinct) to 1 (maximum population
that can be sustained). If the population at time is , then we suppose
the population at time to be , where the parameter ,
sometimes known as the fecundity parameter, controls the rate of growth.
Start with a small population, say , and study the result of
iterating the model, for various values of . For which values of does the
population stabilize at ? Can you say anything about the
population when is 3.5? 3.8? 5?

1 4

t x
t 1+ rx 1 x–() r

x 0.01=

r r
x 1 1 r–=

r

Arrays 79

2.3 Arrays

80

An Introduction to Computer Science

2.4 Functions (static methods)

Recursion 81

2.5 Recursion

82

An Introduction to Computer Science

2.6 Input and Output

137

3 Object-Oriented Programming

3.1 Data Types and Java Classes

3.2 Modular Programming

3.3 Encapsulation and ADTs

3.4 Inheritance

138 Object-Oriented Programming

An Introduction to Computer Science

185

4 Fundamental ADTs

4.1 Linked Structures

4.2 Stacks and Queues

4.3 Priority Queues

4.4 Symbol Tables

4.5 Graphs

186 Fundamental ADTs

An Introduction to Computer Science

239

5 A Computing Machine

5.1 Data Representations

5.2 TOY machine

5.3 Instruction Set

5.4 Machine-Language Programming

5.5 TOY Simulator

240 A Computing Machine

An Introduction to Computer Science

283

6 Building a Computer

6.1 Boolean Logic and Gates

6.2 Combinational Circuits

6.3 Sequential Circuits

6.4 Components

6.5 TOY Machine Architecture

284 Building a Computer

An Introduction to Computer Science

341

7 Theory of Computation

7.1 Languages and Finite-State Automata

7.2 Turing Machines

7.3 General-Purpose Computers

7.4 Computability

7.5 Chomsky Hierarchy

7.6 Proving Properties of Programs

342 Theory of Computation

An Introduction to Computer Science

387

8 Systems

8.1 Library Programming

8.2 Compilers, Interpreters, and Emulators

8.3 Operating Systems

8.4 Networks

8.5 Applications Systems

388 Systems

An Introduction to Computer Science

441

9 Scientific Computation

9.1 Precision and Accuracy

9.2 Symbolic Methods

9.3 Linear Algebra

9.4 Solution of Differential Equations

9.5 Data Analysis

9.6 Simulation

442 Scientific Computation

An Introduction to Computer Science

487

10 Analysis of Algorithms

10.1 Predicting Performance

10.2 Guaranteeing Performance

10.3 Reduction

10.4 Computational Complexity

10.5 Intractability

10.6 Case Studies

488 Analysis of Algorithms

An Introduction to Computer Science

